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a b s t r a c t

We consider a discrete space–time in which conservation laws
are computed in such a way that the density of information is
kept bounded. We use a 2D billiard as a toy model to compute
the uncertainty propagation in ball positions after every shock
and the corresponding loss of phase information. Our main result
is the computation of a critical time step above which billiard
calculations are no longer deterministic, meaning that a multi-
verse of distinct billiard histories begins to appear, caused by the
lack of information. Then, we highlight unexpected properties of
this critical time step and the subsequent exponential evolution
of the number of histories with time, to observe that after cer-
tain duration all billiard states could become possible final states,
independent of initial conditions. We conclude that if our space–
time is really a discrete one, one would need to introduce extra-
dimensions in order to provide supplementary constraints that
specify which history should be played.

© 2017 Elsevier Inc. All rights reserved.

0. Introduction

One of the fundamental problems in physics is the uncertainty propagation inherent to non-linear
dynamical systems, which leads to their unpredictability. Certainly due to the complexity of the
n-body problem even with point-like masses, according to our best knowledge no numerical simula-
tion has been published to compute explicitly the uncertainty propagation during time. This problem
is generally apprehended using mathematical approaches such as Gaussian Mixture Models and
Polynomial Chaos Expansions [1]. We propose here a numerical model that enables to compute the
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uncertainty propagation of the n-body problem by considering the non point-like case of interactions
into a billiard.

It is widely considered that unpredictability is a limitation to calculability that does not question
determinism, but which is only due to our ignorance of adequate precision of initial conditions
(supposed to be infinite in a continuous space). This calculability problem is apprehended by different
approaches, essentially stochastic ones that deal with probabilities of multiple possible evolutions or
histories. These probable histories are not considered to be realistic solutions but only approximations
or estimations of the unique solution that really occurs. This raises thus the following question: could
the information about initial conditions for objects in our physical reality be accurate enough to admit
systematically unique solutions? As long as one avoids this question, one automatically neglects the
possibility for the evolution of a system to be really potentiallymultiple,meaning that thismultiplicity
would be inherent to physical reality. Although this is questioning determinism, it is nomore possible
today to ignore this, because the Everett multiverse theory [2], claiming that all possible events due
to indeterminism occur into many worlds, is now widely considered as one of the best interpretation
of quantum mechanics [3,4].

Neither questioning nor cautioning the validity of this interpretation, one can anyway consider the
potential incompleteness of discrete time-dependent laws of physics that it implies. This potential
incompleteness is going hand in hand with a lack or a loss of information that could determine the
actual history, face to which random choices seem to be made like in Brownian motion. A remarkable
result mathematically demonstrated recently [5] is that the deterministic equations of elastic hard-
spheres shocks do not prevent from a true Brownian motion to be reached after a long time into
a billiard. This demonstration has been made by studying the branching process of collision trees
following an infinitesimal perturbation of the position of a tagged ball. These authors have shown
that this phenomenon occur when the number of balls is increased toward infinity [5]. From a
physical point of view the occurrence of a Brownian motion corresponds to a loss of ‘‘memory’’ of
any phase state, meaning it becomes a random state independent of initial conditions. But what is
this ‘‘memory’’ or initial condition, except information? What is the physical nature of information?
Could information be really physical?

A confusing problem about physical information is that it is closely linked to entropy and energy in
a way that leads to contradictions when one simply tries to define it. First, the idea that information
is physical has been proposed by Szilard [6] and highlighted by Landauer [7,8], giving information
the thermodynamic sense of a physical quantity, which is the opposite of entropy variation. It is
based on the fact that erasing one bit would correspond to the dissipation of k log(2) in entropy.
But the Shannon’s theory of information [9] has introduced subjective entropy [10] that is defined
using probabilities, quantifying all types of information such as that contained in a message. Con-
sequently, the attempts to define physical information as a genuine physical quantity, avoiding the
trap of probabilities that inevitably represents a subjective lack of knowledge [11], have resulted
in a lot of confusion, amplified by the eternal debate about how to solve the Maxwell’s Demon
problematic [12,13]. Today, a widespread opinion is to consider physical information as related to
the computational complexity of a system [14], expressing it for example as the entropy of a cellular
automaton that leads to its calculation [15]. But this interesting concept of physical information,
which seems to have the advantage of being more objective, is lacking a computational model of
universe. Furthermore, the physicality of information as originally defined by Szilard has been verified
experimentally in 2012 [16] and confirmed by new experiments more recently [17]. However, today
the debate about the subjectivity of entropy is far from being closed [18].

Indeed, if phase information is actually physical, its density should be everywhere limited as it
is the case for energy or matter: objects with infinite energy or matter do not exist. But this seems
to contradict our idea of a continuous space, which could be indefinitely divided into elementary
volumes. According to Beckenstein [19] and Penrose [14], for example, our space–time could be a
discrete universe that has a finite density of information everywhere.

In this paper,we use a finite density of information thanks to a discrete spacemodelwhere position
and momentum phase states define the physical information of the system. Then, one can replace
subjective microstate probabilities of the system (denoted pi) by objective ones that are calculated
from phase-state uncertainties. Following Brilloin [20], thismeans considering entropy as the amount



430 P. Guillemant et al. / Annals of Physics 388 (2018) 428–442

of missing information. If all microstates are equiprobable one can convert Gibbs entropy into its
Boltzmann expression and then to information entropy [21], as follows:

S = −k
∑

i

pi ln (pi) = k ln (W ) = k ln (2) (Imax − Ipq) (1)

In this expression Ipq is the physical information of the system, varying from a maximum value
Imax = Log2(Wmax) corresponding to the situation where all objects of the system are perfectly
configured (no uncertainty), to the zerominimum corresponding to the situationwhere uncertainties
on phase states are maximum.

The aim of this paper is to study the possibility for a truly multiple evolution of trajectories in
our discrete space to be a consequence of the decay of Ipq below a critical value. To enlighten this
assertion, we present computations of isolated billiards, which essentially consists in determining
the critical time step separating deterministic and stochastic trajectories. An idealized billiard has
been chosen to study the influence of key parameters on the loss of information as it is among the
simplest toy models related to basic physical laws. The main result of this study is a quantification
of the amount of deterministic information compared to the amount of information contained into
initial conditions. This is followed by an evaluation of the growing law of the number of multiple
histories after critical step, so as to estimate the number of extra dimensions that could be necessary
to maintain determinism.

1. Theoretical framework

1.1. Billiard model and governing equations

We have chosen a frictionless 2D hard-sphere billiard model with elastic shocks (same mass and
diameter) to estimate the propagation of uncertainties during interactions.We haveworkedwith two
kinds of billiards, a periodic one and a finite size one with borders (cf. Fig. A.1 in appendix). Between
two shocks the equations of movement of any ball i involve phase position

−−→
qı (t) and velocity

−−→
Vı(t)

according to the following equations:⏐⏐⏐−−→Vı(t)
⏐⏐⏐ = Cte and

−−−→
qı (t1) =

−−−→
qı (t0) +

∫ t1

t0

−−→
Vı(t)dt (2)

If we consider any collision between two balls i and j with −→pı and −→pȷ momentums at collision
point Pc (defined as the middle of their centers Gı and Gj, cf. Fig. 1), they are changed to

−→
p′
ı and

−→
p′

j . The momentum conservation equation gives −→pı +
−→pȷ =

−→
p′
ı +

−→
p′
ȷ , i.e. two scalar equations in

projection along x and y axis. A third equation is given by conservation of kinetic energy (same ball
masses) p′2

1 + p′2
2 = p21 + p22. Two others equations are given by the conservation of momentum in

projection along the
−→
∆2 axis (perpendicular to

−→
∆1 =

−−→
G1G2⏐⏐⏐−−→
G1G2

⏐⏐⏐ illustrated in Fig. 1):
−→
p′
ı ·

−→
∆2 =

−→pı ·
−→
∆2

and
−→
p′
ȷ ·

−→
∆2 =

−→pȷ ·
−→
∆2, but only one of them is required, as the other is not independent of previous

ones.

1.2. Uncertainty propagation

To calculate the propagation of uncertainties onmomentum−→pı and position−→qı , we compute them
from the phase differences between two quasi-identical billiards (hereafter denotedΩ1 andΩ2). The
first billiard is set up with random initial position and momentum of every ball. The second one is set
up as the first one, butwith perturbated ball positions obtained by adding initial position uncertainties
+/-ε (plus orminus are also randomly chosen)where the quanta ε determines the informationdensity.

Themomentum uncertainties illustrated in Fig. 2 are calculated at the collision times, correspond-
ing to discontinuous variations of momentum uncertainties, from ∆p =

⏐⏐−→pı2 −
−→pı1

⏐⏐ before a shock to

∆p′
=

⏐⏐⏐−→pı2′
−

−→
pı1′

⏐⏐⏐ after the shock. Note that the amplification ∆p′ > ∆p is due to distinct collision
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Fig. 1. Sketch of a contact between two balls.

Fig. 2. Propagation of momentum uncertainties ∆p to∆p′ during a collision.

points that form an angle α between ball j center (identical for Ω1 and Ω2 on Fig. 2). They remain
constant between two shocks, unlike position uncertainties

−−→
∆qı1 and

−−→
∆qi2 that are growing linearly

between two shocks.

2. Computations

2.1. Discretization and phase information

The set of governing equations is computed in a discrete Cartesian phase-space with the 64 bits
precision of our computer. To study the influence of information density on the amount of information
we set a range of different ε quanta of position (from 2−5 to 2−35), equal to the minimum position
uncertainty at the beginning of calculations. Our calculations were done into a 1024 × 1024 square-
pixels billiard game of 10 bits resolution. The precision of initial conditions varies from 15 bits to 45
bits with a 5 bits increment.

The aimof our calculations is tomeasure the uncertainty evolution versus time by computing them
from the differences from billiard Ω1 and Ω2 ball phases. Given ∆p(n) and ∆q(n) uncertainties of ball
n, the amount of phase information Ipq can be expressed in the form:

Ipq =

Nb∑
n=1

Log2(
∆pmax
∆p (n)

) +

Nb∑
n=1

Log2(
∆qmax
∆q(n)

) (3)

where ∆pmax and ∆qmax are the maximum uncertainties: ∆qmax = ∆pmax = 1024. Note that we
always have: ∆pmax ≥ ∆p(n) ≥ ε and ∆qmax ≥ ∆q(n) ≥ ε.

As uncertainties on positions create uncertainties on momentum and conversely the two summa-
tions should be comparable. Our calculations confirmed that one can consider them as approximately
equal. As individual uncertainties and their logarithms are very different when n varies, we calculated
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their geometrical average ∆pmoy, whose logarithm is the average of Log(∆p(n)) for all balls, leading
to the following expression of Ipq:

Ipq = 2Nb Log2(
∆pmax
∆pmoy

) (4)

2.2. Algorithm

To calculate the time variation of Ipq, we have computed all successive shocks between ball i1 and
ball j1 in billiard Ω1 and repeated these calculations in the second billiard Ω2 until one obtains i2 ̸=

i1 or j2 ̸= j1, meaning that we have reached a critical step where histories in the two billiards become
different, as in Fig. 3 which displays divergent positions and velocities of blue and red balls of the two
billiards.

We performed these calculations for different ball numbers Nb ranging from 23 to 29 and different
values of ε, ranging from 2−5 to 2−35. Then, for each couple (Nb, ε) we repeated the computations
Nr times with random editions of initial conditions (Nr = 4096/Nb). This choice was a compromise
between the necessity to reduce computational timeswhile getting statistically robust enough results.
Illustratively, our calculations last approximately a few days on the Windows XP system based
computer we used. The algorithm for calculations until critical step consists in:

– Calculate the next shock n in billiard Ω1 by computing all the possible shocks of the ball i1 with
other balls of Ω1 at different times, choose the minimum time t1 and then get the value of j1;

– Calculate the corresponding shock into billiard Ω2 and then get its time t2;
– If t1 < t2 calculate the position of balls i2 and j2 at time t1, or else calculate the position of balls i1

and j1 at time t2, so as to get position uncertainties ∆q(n) at the sameminimum time and to compute
the change in balls positions after time |t2 − t1|.

– Compute the momentum uncertainties ∆p(n) from newmomentums in Ω1 and Ω2 after times
t1 and t2 of collisions.

– Add the logarithm of ∆p(n) so as to calculate their geometrical average ∆pmoy (Nt):

Log(∆pmoy (Nt)) =
1

NrNb

m=Nr∑
m=1

n=Nt (Nb+1)∑
n=NtNb

Log(∆p (n)) (5)

Nt is the non-dimensional time corresponding to the average number of shocks per ball. Nt varies
from 0 to Nc where Nc is the critical time, i.e. the average number of shocks per ball at critical step. Nr
is the number of random editions of initial conditions.

In the followingwe present themain results from our study: (i) the evolution of phase information
Ipq until critical step Nc ; (ii) the variation of Nc with respect of main parameters ε and Nb; (iii) the
paradox of information at critical step. We also present in appendixes more detailed results: different
approaches to extrapolate computed results when Nb tends toward infinity, along with the influence
of void ratio Rv (defined as the ratio between balls area to billiard area). Its role in the loss of
information becomes very important when Rv tends to zero as it particularly accelerates the loss rate.
In our studywehave chosen a high value of Rv = 0.33 corresponding tominimumrates of information
loss. We made this choice in order to minimize computing times.

3. Critical step

3.1. Evolution of phase information

Despite the fact that ∆p(n) values vary considerably for one ball, we found that the evolution of
phase information until critical step can be statistically considered as linear. This can be explained by
the fact that while uncertainties stay very low compared to the ball diameter, the dispersion angle α

in Fig. 2 remains close to zero and then ball curvature has still no effect on the shock dispersion law
of uncertainties, whose averages are growing geometrically with the same rate.
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Fig. 3. Illustration of the critical step with Nb = 128. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 4. Example of ∆p(n) samples and their average values ∆pmoy (Nt ) computed during one calculation cycle until critical
step, with Nb = 128 balls and ε = 2−35 . Critical step reached at Nc = 14 shocks per ball. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

In Fig. 4 the linearity of ∆pmoy (red dots) can be observed with ∆p(n) values (blue dots) that were
computed for ε = 2−35 and Nb = 128. For visibility of blue dots we used here only one random
edition of initial conditions (Nr = 1). With a high number Nr of these editions all results show this
linear evolution, even with low values of Nb. As a consequence, computing this linear variation of Ipq
versus time is equivalent to study the influence of main parameters on the critical step Nc .

If one splits the precision of results, defined on the one hand by the required precision (Pc = 10
bits) for deterministic trajectories and on the other hand by additional precision (Pa = −Log(ε) bits)
using the maximum of information density for initial coordinates (varying from 5 to 35 bits), one can
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synthesize this in a relationship for phase information Ipq, using the time Nc at critical step:

Ipq = Pc + Pa(1 −
Nt

Nc
) (6)

After critical step, the distance separating two coupled balls suddenly increases and the twobilliard
balls are no longer superposed on the screen (Fig. 3). At this stage, our calculations are stopped because
it is no longer possible to synchronize the two billiard balls so as to calculate the uncertainties at
well defined times. However, it is obvious that after this step, phase information rapidly decays to
zero because velocity vectors of diverging Ω1 and Ω2 coupled balls become extremely different and
cause a contagion effect that rapidly spreads to the rest of billiard. Thus we can consider that phase
information quickly reaches its zero minimum and then adopt the linear expression of Ipq (10) as a
rough approximation when Nt > Nc .

3.2. Evolution of critical step versus main parameters

The main parameters we consider here are Log2(Nb) and Log2(ε), whose effects on the critical step
are opposite and summarized in Fig. 5. We made three types of calculation to obtain these results,
which are differentiated in this figure by rectangles:

• A real computation of all shocks between all balls in the billiard, giving results until Nb = 512,
detailed in Appendix A;

• A modeled simulation using a momentum dispersion function, giving results until around
Nb = 130 000, detailed in Appendix B;

• An asymptotic linear approximation for higher values of Nb, detailed in Appendix C.

We note a good correspondence between the results from the different simulations, except for
high values of Nb and low values of ε for which critical time Nc is the highest. These discordances for
Nc > 10 can be explained by the limited computing precision of 64-bit, which introduces arbitrary
information to lower bits in our calculations at each shock. The consequence of such a computing error,
after its propagation to higher level bits for numerous shocks, is that ourmodeled simulation becomes
more reliable than our computations, because only the latter is affected by the bias of calculating all
shocks.

If we consider restrictive domain values of parameters we then notice that the variation of Nc
with Log2(Nb) and Log2(ε) is approximately linear, as confirmed in appendix (C.1). For example, if we
suppose that Log2(Nb) > 10 and Log2 ( ε) <50, we can write:

Nc ∼ 2.8 + 0.21Pa − 0.35 Log2(Nb) (7)

In our frictionless hard-sphere billiard with equal diameters and masses, the void ratio Rv is the last
parameter that influences the Nc value. As Fig. B.1 (in Appendix B) illustrates, when the diameter of
balls is decreased by a factor 2 (or its area by a factor 4), the average value of the amplification factor
of the momentum uncertainty is approximately increased by a factor 10. This is decreasing the value
of Nc or increasing the rate of information loss in the same proportions. Note that the critical time is
decreased only in terms of shocks, but as the real time between shocks is increased by the rarefaction
of shocks, the non-reduced critical time is increased.

3.3. Paradox of information at critical step

Knowing the critical stepNc , we can now focus on themain practical interest of our study, which is
to compare the amount of information contained into initial conditions and the maximum amount of
information to compute reliable trajectories of balls, here called ‘‘calculable information’’.We consider
here that a trajectory is no more reliable when it is computed beyond the critical step, because it
would be biased by the problem of emergence of multiple histories. This point is generally ignored or
neglected by computations implying a lot of interactions like in gaz dynamics for example, because
they always use high level statistical equations that occults the limit of deterministic calculability.
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Fig. 5. Nc variation curves versus Log2(Nb) et -Log2(ε) for the void ratio Rv = 0.33: Lines represent a modeled simulation
(Appendix B); dotted lines on the left represent the real computation of all shocks; dotted lines on the right represent an
extrapolation of Nb values and the red curve on the top corresponds to ε = 45: see Appendices A–C for detailed results.

The amount of calculable information Ici can be expressed knowing only the number of coordinates
of shocks, which are enough to determine all trajectories. So, for one axis we have:

Ici = PcNbNc (8)

The information Iic contained into initial conditions must include both positions and velocities and
use the total precision Pi = Pa + Pc so that we have:

Iic = 2PiNb (9)

This leads us to rise what we call a ‘‘paradox of information at critical step’’, meaning that it exists
large sets of parametersNb, Pc and Pi for which the amount of calculable information is lower than the
amount of information contained into initial conditions. This unexpected situation is occurring when
Nc < 2Pi/Pc (Pi < 64 bits in our study).

For example, if we consider an initial precision Pc = 10 bits for calculable information, this is
occurring for Pi = 40 bits when the number of balls is greater than 1024 (Log2(Nb) = 10). The Fig. 6
shows the higher the various precisions, the higher should be Nb for the paradox to occur. It also
means that whatever the prescribed precision, as small as desired, there is always a number of balls
above which the calculable information is lower than the one used to store initial conditions. Indeed,
increasingNb has the effect to increase the rate of information loss. Fig. 7 illustrates an example of this
rate growing from an average of 3 bits per shock, for low values of Nb, to more than 5 bits per shock
for high values of Nb, corresponding to the cases Nb = 200 and 5000, respectively. The intermediate
case (Nb = 1000) corresponds to the paradox of information limit (Iic = Ici) for which the number of
horizontal blocks is the double of the number of vertical blocks.
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Fig. 6. Information paradox and its emergence conditions: squares correspond to Nc and Nb values for paradox limit.

Fig. 7. Average loss of information of one phase coordinate. Colored rectangles are 10-bit blocks. Green blocks correspond to the
information Iic required for initial conditions (Pi = 40 bits). Blue blocks correspond to the calculated information Ici (Pc = 10
bits). The number of horizontal blocks is the critical time Nc . (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

This paradox of information can be explained by the increased probability for any ball at any time
to reach the critical stepwhen the number of balls is increased. This is due the fact that our estimation
of the critical step Nc has only a statistical sense. If one considers individual ball trajectories, the
possibility to reach the critical step, even after only one shock, is never zero and only depends on
initial conditions.

Our computations have essentially pointed out that the amount of deterministic or calculable
information is of the same order as the amount of information that is contained into initial conditions.
Our study of parameters can be summarized by two key thresholds:

• A critical step, above which multiple shock histories appear, separating deterministic history
and stochastic histories;
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Fig. 8. First occurrence of multiple billiard histories after critical step.

• A critical number of balls, above which the calculable information of the deterministic history
becomes lower than the information contained into initial conditions.

Wewill develop this result in the discussion as an argument in favor of the incompleteness of physical
laws in a discrete space–time of finite density. Note that it is reinforced by a more qualitative result
concerning the void ratio parameter Rv , which has an analog effect. When the ball diameters are
decreased, Rv tends toward zero and then the rate of loss of information grows toward infinity, as
Fig. B.1 illustrates in Appendix B.

3.4. Growing law of different histories after critical step

After critical step, histories of shocks in the two billiards begin to differ, exactly after the first shock
between a couple of balls (Ai, Bj) is followed by subsequent shocks of Ai involving different couples
(Ai, Ck) and (Ai, Cl) with k # l, as illustrated in Fig. 8.

Consequently, phase indeterminations of position and velocity of Ai become too large for going on
along a unique history by synchronizing the two billiard balls, i.e. for calculating for each couple (Ai,
Bj) the two slightly different times of Ai subsequent shock with a unique Ck. This is due to the large
amplitude of the angle indetermination δ (cf. Fig. 8), which is rapidly converging toward its maximum
360◦.

Then, we have to consider multiple histories, but it is no more possible in practice to make
statistically efficient calculations because the computing time ismultiplied by the number of histories
and then growing up exponentially with the number of shocks. However, it remains interesting to
estimate the law of growing of the number of histories versus time, by considering the neighborhood
Ck of each ball Ai for which each couple (Ai, Ck) is involved as a possible subsequent shock. For doing
this, let us first introduce a new stage corresponding to the Brownian diffusion time where the total
amount of balls phase information in the billiard has reached zero. It means that each ball of the
billiard has reached 360◦ indetermination and also passed, after each individual critical step, through
a diffusion process by traveling a distancewhosemaximum is∆qmax, so that not only the velocity but
the position uncertainties too have reached their maximum. After this diffusion time all the possible
histories become independent of initial conditions. Therefore the information that could redefine the
completely lost positions and velocities of each ball in each history become an additional one, brought
by a ‘‘choice’’ of one history among all the possible. As a consequence, after the Brownian diffusion
time a Brownian evolution is really installed in histories, in agreement with the result of Bodineau
et al. [14].

Now, to estimate the growing law of the number of histories (or ‘‘choices’’), let’s D being the mean
number of Ck balls (k varying from 1 to D) having a shock with Ai after the Brownian diffusion step.



438 P. Guillemant et al. / Annals of Physics 388 (2018) 428–442

The Brownian evolution authorizes us to assimilate D to a constant after this step. As D varies with
void ratio its calculation is not straightforward, but we just need to know that D>1 for any billiard
with at least 3 balls, to conclude that the number Nh of histories is growing exponentially with time
or number of shocks:

Nh ∼ NhcsD(N−Ncs) (10)

where Nhcs is the total number of shocks until global diffusion step and Ncs the total number of
different histories at this step. It is then important to note that whatever the number of balls Nb and
the quanta ε, the number of states of the billiard keeps bounded, meaning it is not growing with time.

Conjugating this fact with (i) an exponential growth of the number of histories with time, and
(ii) themore andmore homogeneous distribution of phases of all histories occurring during Brownian
motion has an original consequence. Above a certain saturation time, the number of states reached by
all histories exceeds the total number of possible states of the billiard. It means that the final state of
the billiard becomes completely independent of its initial conditions and that any state of the billiard
can become a final state.

4. Discussion

The main interest of the present work is to have identified and quantified, with our different
expressions of Nc , a critical step above which calculations are no more deterministic, meaning that
the precision of initial conditions does not allow to pursue calculations without introducing, among
the multiple possibilities, an arbitrary choice of the final state, independent of initial data. We have
also shown that if calculations are still extended enough in time, whatever state of the billiard could
become a final state.

This raises fundamental questions in the context where information would be really physical and
then its amount bounded. Though it involves a simplified discrete model, the concept of physical
information that we introduced in (7) models a classical type of uncertainty that would be inherent
to any discrete space–time, into which the loss of physical information would nomore be a subjective
loss of information but a real loss of information of space–time itself. That is why it is important to
discriminate the genuine multiplicity of histories that could be due to the physicality of information
(of limited density), from a stochastic unpredictability inherent to a practical limit of initial conditions
precision.

A significant result of our work is that we have found that the amount of deterministic information
that can be calculated until the critical step is of the same order as the amount of information that is
contained into initial conditions. Then, we have raised a ‘‘paradox of information’’ in as much as it
expresses a strange situation: the deterministic information that can be extracted from fundamental
laws has a maximum that can be much lower than the entire amount of information contained into
the initial conditions. Beyond the fact that the initial data should have a physical limit, any predictive
model should indeed be able to provide a calculation which plays the role of data compression
algorithm. In particular, it should be able to compress the data relative to trajectories of balls in a
billiard into a set of initial conditions occupying much less memory, yet we observe the opposite. We
think that this is seriously arguing in favor of the idea that our ‘‘known’’ laws of the Universe are in
fact incomplete at the discrete level.

As a consequence, we have shown that dealingwith physical information raises a strange situation,
which is to make the final state of the billiard independent of its initial state after a saturation time.
This independence is not so strange for statistical physics which made the choice to base its powerful
equations upon random trajectories, justifying probabilistic calculations. But this choice is not solving
the fundamental problem of indeterminism, which implies that if one wants to describe a unique
evolution among a multiverse of possibilities, one has to introduce additional parameters that play
the role of additional space–time dimensions. So, it raises this question: for a discrete space whose
dimension is Nd, how many dimensions should be added to restore determinism?

Adding Nd dimensions so as to also include final positions of a 2D billiard balls (Nd = 2) seems
inescapable to determine precisely trajectories followed by balls after a saturation time. But it is not
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enough, because we also have to choose a unique billiard history among the multiple ones which
inevitably connect initial and final given states, when time is still increasing. The estimation of extra-
dimensions is then complicated by the possibility of cyclic eternal returns that reproduce periodically
the same final state. However, such eternal cycles do not exist in our real space–time because it is in
expansion. But is it possible to generalize thus our study, knowing that the perfectly isolated billiard
does not exist in nature! A first reason to do so is that the loss of information that is responsible for
multiple histories of our billiard is not limited to elastic shocks and can be generalized to all types
of interactions, because we just used momentum and energy conservation laws for our calculations.
An isolated discrete space–time would then lack information that should be compensated by extra-
dimensions. Second, note that even for a non-isolated system, the decoherence mechanism which
reduces quantum superpositions into physical information issued fromenvironment does not prevent
undetermined choices.

If we make this generalization, there is a more convenient way to estimate extra-dimensions,
which is to put initial conditions into the past and to define the path itself as crossing the present state
of the universe (time of observation). If we suppose its uniqueness, we then need the usual Nd + 1
dimensions to define the path and we still have to add 2 Nd dimensions to connect it to past and
future remote conditions. In practice, it could consist in specifying the coordinates of only one object,
whose past and future positions are also unique into the multiverse, so as to assure a deterministic
version of our entire Universe. One would then need 3 Nd + 1 dimensions1 to uniquely define each
history:

• Nd dimensions to define initial conditions;
• Nd dimensions to define final conditions;
• Nd + 1 dimensions to define the path through present state.

Note that velocity data is not needed here because the path is considered unique. In classical
physics, the past and future positions of an object are considered as determined by present positions
and velocities. The use of velocities replaces that of final conditions, supposing determinism and then
a unique universe, without extra-dimensions. But this hypothesis does not permit to characterize
remote past or future positions in a discrete space–time, because physical information is lost between
the present and the past, or the present and the future.

5. Conclusion

In a discrete space–time of finite density of information, it turns out from our computations
that the amount of deterministic information that is calculable using physical laws is of the same
order as the amount of information that is contained into initial conditions. This suggests a possible
incompleteness of governing laws at discrete level. Our results then imply that a 3D discrete space–
time would need 3 additional dimensions to specify final conditions, and even 6 extra ones if one
supposes the existence of alternative present paths, like in many-worlds theory. In particular, we
have argued for the possibility for final conditions of a sufficiently distant future of our universe to be
at least partially independent of our present state, which seems interesting if only because it would
preserve a chance for free will.

Though it is attractive to characterize a unique version of our Universe within the multiverse by
postulating the uniqueness of its present state, one can wonder how many extra-dimensions are
necessary. Our work suggests a discrete space–time could require up to 6 extra-dimensions. This
should be interpreted as highlighting the fact that our known physical laws of the Universe could
still be incomplete to describe reality, and that we would need complementary laws. As it should
be in the present case timeless ones, we guess that quantum gravity emerging from Wheeler Dewitt
equation [22] could bring key elements to compensate the loss of information, so as to calculate extra
dimensions and then restore determinism.

1 That is 4 extra dimensions for a 2D billiard and 6 ones in realistic 3D cases. This addition of 2×Nd dimensions is necessary
to add two points so as to uniquely define the state of the multiverse in present and future, or in past and future, depending on
the reference frame of observation (past or present).
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Fig. A.1. Results of statistical study using the calculation of all shocks repeated Nr times with random editions of initial
coordinates. Two billiard models were used: the first one (unbroken lines) by taking into account shocks with the borders
and the second one (dotted lines) using a periodic billiard. Note negligible border effects for Nb > 128 and approximately
linear evolution of Nc with Log2(Nb) and Log2(ε).

Appendix A. Periodic and aperiodic billiards computation

Parameters: Void ratio Rv = 0.33, Abscissa=number of balls Nb ranging from 8 to 512. Ordinate
= initial uncertainties ranging from ε = 2−5 (bottom) to ε = 2−35 (top). Number of random editions
of initial conditions=Nr = 4096/Nb.

Appendix B. Modelized simulation

The calculation of critical step can be made without computing all the shocks, knowing the
statistical distribution of moment uncertainty amplification during a shock. We used Fig. B.1 slope
parameters (Sd=2.2, Su=−5) of the triangular shape distribution obtained for void ratio 0.33 (R =

16) to calculate the evolution of Nc for higher values of Nb (until 217) and lower values of ε (until
2−45), by randomizing the amplification factor with respect to the distribution, and multiplying it
from ∆p = ε to ∆p = 1. Smooth statistical results of Fig. 5 (second rectangle) were obtained by
repeating this operation a thousand times.

A = Abs(128 + 4Log2

⎛⎝
⏐⏐⏐−→pı2′

−
−→
pı1′

⏐⏐⏐⏐⏐−→pı2 −
−→pı1

⏐⏐
⎞⎠) (B.1)

Different distributions of A value were calculated for different void ratios Rv (from 0.33 to 0.0013)
obtained by decreasing the radius R of billiard balls from 16 to 1. Ne is the number of samples
corresponding to each integer in abscissa A. Note the important increase of A when R is decreasing:
when R varies from 16 to 1 the average value of the distribution varies in the same way as void ratio,
from about 0.1 (Rv = 0.33) to about 0.001 (Rv = 0.0013). Awas calculated using a large set of random
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Fig. B.1. Distribution of the amplification factor A of momentum uncertainty
⏐⏐−→pı2 −

−→pı1
⏐⏐ during a shock.

Fig. C.1. Top left, logarithm distributions of the probability Pd of divergence (critical step) after a number of shocks Nc , in
function of ε. At the bottom, illustration of the borderline case where two balls are just touching, which explains why Pd is
never equal to 0 whatever the Nc value.

editions until 100000 shocks were computed. The coefficients 128 and 4 of (B.1) were chosen in order
to work with integer and positive values of the abscissa A and to get a sufficient set of sampled values
on the horizontal axis.
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Appendix C. Asymptotic behavior

The asymptotic behavior of Nc curves when Nb → ∞ is evaluated by taking into account that
whatever ε, all Nc curves bisect the axis Nc = 1. One reason for this is that the first three curves
calculated for ε = 2−5, ε = 2−10 and ε = 2−15respectively bisect the axis Nc = 1 when Log2(Nb) is
approximately equal to 9, 12.5 and 16 (Fig. 5). A second reason, illustrated by Fig. B.1, is that whatever
ε it is always possible to find a value ofNb for which the probability to reach the critical step after only
one shock is around 100%, so that the result is Nc = 1.

Fig. C.1 then show the result of a statistical computation of the probability distributions ofNc when
ε varies from 2−5 to 2−45, where all curves always bisect the vertical axis Nc = 1. This is justified by
the existence of a borderline case in the behavior of coupled balls: a shock occurs for one of them but
not for the other, as Fig. C.1 shows: this borderline case involves two balls which either collide or just
graze, with velocity values becoming totally different whatever the ε value, which explains why the
critical step can be reached for Nc = 1.

A linear model is then used in Fig. 5 to approximate the decrease of Nc when Nb tends to infinity:

Nc ∼ A + B Log2(ε) + C Log(Nb) (C.1)

where A, B and C are approximately constant values in restrictive intervals of Log2(Nc) and Log2
(ε), equal to 2.8, 0.21 and 0.35 in relation (7), approximately verified when Log2(Nb) > 10 and
Log2(ε) < 50.

References

[1] Y. Luo, Z. Yang, Prog. Aerosp. Sci. 89 (2017) 23–39.
[2] H. Everett, Rev. Modern Phys. 29 (1957) 454.
[3] D. Wallace, The Emergent Multiverse Quantum Theory According to the Everett Interpretation, Oxford University Press,

2012.
[4] T. Damour, A lecture at I.H.E.S, 2015. https://indico.math.cnrs.fr/event/781/.
[5] T. Bodineau, T. Gallagher, I. Saint-Raymond, Invent. Math. 203 (2016) 493–553.
[6] L. Szilard, Zeit. Phys. 53 (1929) 840–856.
[7] R. Landauer, IBM J. Res. Dev. 5 (1961) 183–191.
[8] R. Landauer, Phys. Today 44 (5) (1991) 23–29.
[9] C.E. Shannon, W. Warren, The Mathematical Theory of Communication, Univ. of Illinois Press, 1949.

[10] O. Maroney, Information Processing and Thermodynamic Entropy, Stanford Encyclopedia of Philosophy, 2009.
[11] P. Uzan, Philos. Sci. 11 (2) (2007) 121–162.
[12] J.D. Norton, Stud. His. Philos. Modern Phys. 36 (2005) 375–411.
[13] H.S. Leff, A.F. Rex, Maxwell’S Demon 2: Entropy, Classical and Quantum Information, Computing, Pennsylvania Institute

of Physics Publishing, Philadelphia, 2003.
[14] R. Penrose, in: Hector Zenil (Ed.), Foreword to the Book a Computable Universe, 2012.
[15] P. Tisseur, Nonlinearity 13 (5) (2000) 1547–1560.
[16] A. Bérut, et al., Nature 483 (2012) 187–190.
[17] A. Bérut, et al., J. Stat. Mech.: Theory Exp. 2015 (6) (2015) P06015.
[18] J.M.R. Parrondo, et al., Nat. Phys. 11 (2015) 131–139.
[19] J.D. Bekenstein, Phys. Rev. D 23 (2) (1981) 87–298.
[20] W.J. Gibbs, Elementary Principles in Statistical Mechanics, Yale University Press, 1902.
[21] L. Brilloin, Science and Information Theory, Academic Press, New York, 1962.
[22] B.S. DeWitt, Phys. Rev. 160 (5) (1967) 1113–1148.

http://refhub.elsevier.com/S0003-4916(17)30338-X/sb1
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb2
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb3
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb3
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb3
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb4
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
https://indico.math.cnrs.fr/event/781/
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb5
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb6
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb7
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb8
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb9
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb10
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb11
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb12
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb13
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb13
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb13
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb14
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb15
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb16
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb17
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb18
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb19
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb20
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb21
http://refhub.elsevier.com/S0003-4916(17)30338-X/sb22

	A discrete classical space–time could require 6 extra-dimensions
	Introduction
	Theoretical framework
	Billiard model and governing equations
	Uncertainty propagation

	Computations
	Discretization and phase information
	Algorithm

	Critical step
	Evolution of phase information
	Evolution of critical step versus main parameters
	Paradox of information at critical step
	Growing law of different histories after critical step

	Discussion
	Conclusion
	Periodic and aperiodic billiards computation
	Modelized simulation
	Asymptotic behavior
	References


