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The experimental confirmation of Landauer’s priteipnd the emerging concept of a
computational universe make it more and more ckuciaunderstand the physical
sense of information, as it has an intrinsic relatwith observer knowledge that is
often rejected as subjective. In this paper we@se an objective definition of phase
information in a purely classical computationaluanse with quantized phase states,
this quantization being imposed by our fundamerigpothesis that physical
information has a finite and limited density, resgible for the irreversibility. We use
a statistical study of results obtained by numérsianulations of a billiard to
highlight an excessive and paradoxical loss of @hasrmation that we solve by
involving a "classical to quantum transition”. Aftéiscussing the pertinence of such a
transition to clarify some problematic aspectstafistical physics, we conclude that a
computational universe should automatically losasghinformation through time in
an irreversible way, which could be compensated lgain of physical information
due to observation and decoherence.

. INTRODUCTION

One of the fundamental problems of mainstream pbys the question of how to
define physical information, which is very closdilyked to entropy and energy. Whereas in
guantum physics some part of information providgdabmeasurement can be observer
dependant, this is not the case in classical pbysiere all phase states are considered to be
deterministic, so that their intrinsic informaticshould necessarily be independent of
observation. In support of this objective conaaptithe idea that information is physical -
based on the fact that erasing one bit corresptntse dissipation ok log(2) entropy — as
proposed early on by Szillard [1] and highlightegd bandauer [2], has recently been
confirmed experimentally [3]. But the informatiohebry of Shannon [4] has introduced

subjective entropy [5] defined using probabiliteesd quantifying all types of information,
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such as that contained in a message. Consequéhdy,attempts to define physical
information as a genuine physical quantity by awwdthe trap of probabilities [6], that
inevitably represents a subjective lack of knowksdbave resulted in a lot of confusion
amplified by the eternal debate about how to stteeMaxwell's Demon problematic [7] [8].
Today, one widespread opinion is to consider playsioformation as related to the
computational complexity of a system [9], for exdepy expressing it as the entropy of a
cellular automaton [10] that leads to its calcaliatiThis modern concept of information has
the advantage of being more objective and of gaigfthe initial concept that information

has to come in bits.

Since we disagree with this opinion, in this paperpropose a definition of physical
information [11] which is relative to states andapés of elementary objects of a system. We
focus on phase information of objects like parsclmolecules or balls and we define their
information as the number of bits necessary to me@mohe phase coordinates of objects in a
discrete phase space. Note that the idea of a disbyrete space is seriously considered in
physics, for example by Roger Penrose who recemfyed in this sense by saying that “
might turn out that a discrete picture [for a contgional space-time] is really the correct
on€ [9]. As we do not know the inner structure otbilhypothetical space, we have chosen
for our study a cartesian grid model. Our purpast ishow that whatever the grid precision
or space quantum, we cannot avoid a loss of infoboma associated with increasing entropy
- that is independent of space quantum and obsefves would be a genuine loss of
information from the universe particularly likely toccur within non linear dispersive
systems. From a purely classical point of views tmeans that phase states in such systems
could become partially indeterminist like in quantumechanics. However a deterministic
framework could be reestablished if a loss of aa$sinformation was equivalent to a
transition from classical to quantum states, amlighwhat we want to argue for. This kind of
transition has already been observed, for examplesome non linear systems in

nanotechnologies [12] or with quantum dots [13].

According to Beckenstein [14], we make the fundalehypothesis that a discrete
computational universe has a finite density of sitzd information everywhere. The
transition from classic to quantum behavior woulert be caused by a decrease in
information density. Consequently the frontiervimn classical and quantum states of
particles would not be clearly defined because thagsition would be continuous, as

confirmed by a recent experiment [15], thus intrmdg the possibility that quantum behavior
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could affect classical macroscopic objects. Somikkmewn indicators of this behavior can

be seen for example in interferences of giant fefle molecules [16]. Let us also quote the
Gibbs paradox [17] that is only clearly solvedhe tontext of quantum statistical mechanics
for which the principle of indiscernability of olgis is inherent to their quantum nature. But

what about classical objects?

In quantum mechanics, indeterminacy is quantitbtiveharacterized by wave
function, which is a probabilistic distribution tife measurable values of a given observable.
The epistemic idea we are following is that thishabilism has to be considered as a
fundamental indeterminism and not as the resuuaintum model incompletion. This idea
has recently been reaffirmed by M. F. Pusey etl8] [n a paper arguing in favor of the
intrinsic reality of the quantum state. Another exgpof quantum indeterminacy is contained
within the Heisenberg principle, relating the stamtideviations of positiop and momentum
g as expressed below:

h
ApAQ=—— 1
PAQ2- (1)

Here too, the principle of indetermination is swulbgel to various interpretations, the
original one arguing that it is the result of arevitable disturbance of measurements.
However, the more fundamental interpretation of timequality, asserting the intrinsic
indeterminism of quantum states, has recently lweafirmed by an experimental result of
Lee A. Rozema et al that was obtained by weak nmeasants [19].

According to our hypothesis, we consider that titarisic uncertaintieglp andA4q of
any classical or quantum object are variables rgilt from a fundamental limitation of its
phase information. This limitation can be expressgidg the maximum uncertaintiggmax
and Agmax that can be deducted from the geometric and etiergkaracteristics of the

system. So we can express the phase informatitheiform:

| _ Logz[Ap maxAq maxj @

pg_det — ApAq

The ratio between brackets corresponds to the iNgesumber of microstates of the
object. Note that there would be no sense coursiates undedp and4q because it would
guantify a real uncertainty or lack of physicalarrhation. In the case of a quantum particle

we know the maximum of residual information thad garticle can acquire:
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ApA
g ina = Logz(%j 3

If the phase information of any object was unvagyive could express it in the form:

ApmaxAgmax
p q J @

Ipq = Ipq_det+ Ipq_ind = Logz( Ah

Our hypothesis, is then to consider that, for aojgct, the physical phase information
is expressed by det instead oflpq, giving it an exclusively classical sense. Thegoility
for Ipq_ina Ipg_det @Ndlpq dett0 Vary is equivalent to the possibility for classiobjects to lose
information, and the aim of our study is to highlig@and quantify this loss. In support of this
definition of phase information, when we compargdtl(3) we can interpret the Heisenberg
Principle as being a simple condition for phasernmfation to have a maximum, according to

our hypothesis:

ApmaxAgmax
p q j 5)

Ipq_ind >0> Ipq_dets Logz( Ah

This way of defining physical information can bederstood as the equivalence
between a classical and a completely informed ,statd between a quantum and partially
non-informed state, meaning that the transitionveeh classic and quantum states would be
progressive, as revealed by recent Nobel pricegeSelaroche and David Wineland. It
permits also to clarify the problem of irreversityilas being linked to the variation of
physical information, which is a loss during thasdical to quantum transition and a gain
during the quantum to classical one, with no palisiio recover the same information as

before.



II. MATERIAL AND METHODS

We present a numerical method to calculate theuteol of global entropys and
individual information(2) during the multiple interactions of classichjexts such as balls or
molecules. First, we have to establish the expsassf S from the summations dfqy get in
our Cartesian coarse-grained simplified space streavith quanta;, and &, for distance and
momentum (for which we would hag &=h if the space really had an elementary structure

of this type).

A discrete quantification of phase states was pmegovery early on by Gibbs [16]
using the coarse-graining method to explain the otmmous growth of entrop§ within a
mixture before achieving equilibrium. However, tbss of information {4S) highlighted by
this method cannot be considered as a genuinefloss the system as long as the basic

equation from which it derives contains subjecpvebabilitiesp; :
s=-k2. pin(p) (6)

Wherek is the Boltzman constant apd are the probabilities of microstatiesf the system.

For our calculations we have chosen a two-dimemsibiliard system containing
identical incompressible balls. We calculated ladl €lastic shocks between billiard balls and
with the borders, beginning with random initial daions where all positions and
momentums were perfectly known, mean#ig= & and4q = & ( i. e. completely informed
phases). Since we were unable to work with reealigalues of quantag and &, we
considered values varying from®2o 2°° fractions of the used resolution to quantify our
results, whose positions were visualized in a 402696 square-pixels billiard game.

We used an asymptotic analysis to estimate thdtseeu much lower quantum values
and also for high values of the number of bBlisOur calculations were repeated as long as
necessary to obtain statistical results that wexeust and independent of the initial
conditions. At initial conditions wherdp = & and4q = &, all microstates are equiprobable,

SO we can rewrite (6) in the form:

Ny
_ ApmaxAgmax| |
S= —kln[{ Ao j J = =N,KIN@)! o e (7)



In our system we choosfipmax= 4096. As fordgmax it is limited by the sum of our initial
moments. When we calculate the shoc#s, 4q and thenS vary as a consequence of a

chaotic dispersion - or Lyapunov effect [20] - tehbcks produce in the trajectories.

In order to calculate the evolution fwe had to overcome two difficulties. The first
is that the variation aflp and4q is not visible in terms offyq_qet bits because the number of
bits that is used to save any data is a constardhwbr our calculations is equal to 64 bits.
The second difficulty, more problematic, is thatath time the real information of any result
decreases while maintaining the same number of ibieccumulates more and more false
information, due to the limitation of computer pseon that produces inconsistent bits at

lower scales that end up corrupting calculatiorthathigher scales.

To remedy to the first difficulty, we calculatedawdifferent trajectories for each ball -
as if they were in two distinct billiards - with anfinitesimal difference on their initial

positions equal tatg,,, the plus or minus sign being randomly choserewh ball and axis

of coordinates. We approximatedp by the difference of position between the two
trajectories at identical times aut] by the difference of velocities at the instantsabcks

with the same ball, these instants being slighifigient.

To overcome the second difficulty, we worked witlues ofg, ranging from 2to2
% by successive divisions by’,2avoiding values betweern*2and 2°° that could falsify
calculations with the effect of inconsistent lowdé data after only a few shocks. We
estimated that the using of only 20 to 50 bits cared to the maximum 64 permitted (14 bits
never being used) could ensure sufficient religbfior our results over an average time of

respectively 25 to 10 shocks per ball.

From the calculatedp(n) and4q(n) values, where n is the number of shocks, we can
derive from (7) an expression of the global infotima of the billiard by dividing this

expression by the entropy quantirin(2), changing to logarithms in base 2:

| = % Logz{Apmaqu maxJ _ % Logz(ApmaxJ N % Logz{Aq maxJ ®)
Coha U ap(maa(n) JoE T ap(n) ) s Ag(n)
Where:

ap(n) = (X() - X(n2))’ + ((nD) -Y(n2)Y (9)



X (n,i) andY(n,i) correspond to the coordinates,Y) of the trajectory=1, 2 of a ball after n
shocks on the billiard. The expression ofig(n) is similar todp(n) : replace positions with

velocities.

We noticed that when we follow the two trajectorasthe same ball, whose initial
position coordinates have a difference thaXs= &, and/ordy = & and with identical initial
velocities, the first shock between one ball andtlaer creates a difference of velocity that
increases with each subsequent shock. As a rasul, useless to introduce an initial
difference of velocity whose effect is less sigeafit than that strictly produced by the
difference of positions. We can conclude that ifpa@ntless to use two quantg and g
simultaneously, thus we opt for the only considerabf the position quantum and to ignore

the effects of the velocity quantum, which leaddigregarding the second term of (8).

For the same reason, it is pointless to use th@i@osjuantum to round up to the
appropriate precision the results of calculatingheshock - in respect to the coarse-grained
grid - because the effect of this rounding-up oe trajectory is negligible in comparison to
the effect of the initial quantum difference betwedée two trajectories. So, our coarse-
grained calculation is returned in a study whicimsists of following the evolution of two
guasi-superposed billiards, using the maximum preai permitted by the computer.
However, a residual difficulty is the necessitysghchronizing the two billiards balls so as to

optimize computing time.

As results for each trajectory are highly dependeninitial conditions, we perform a
statistical study by averaging the obtained valoésdp for many initially randomized
trajectories so as to calculaipmoyand then to compute the following average vanatbd

information:

Z'— {Apmaxj el )-NyLo {Apmoy} )

P

max(,) = NbLogz{ApgmaX] =N,P 1)



WhereP; is the bit precision of initial conditions, whisfaries between 15 and 55 bits. So,
our study consisted of calculating the evolutionrdpmoyand for this purpose, we chose a

time unit equal to the average number of shockdbpkr

In addition tog, we investigate the influence of two other paramseterhich are the number
of shocks per ball and the void raRv that play an important role in the loss of infotioa,

particularly the rate of the loss.

The continuous decay of the information leads &apparition of an important phase
that is occurring when one value i becomes large enough locally to cause the divesgen
of the trajectories histories of the two-pairediditls. This happens more precisely when the

shocks of two coupled balls occur with no more dedpnes.

Q00
Ooooogbo O 80000%
0% 0 Ne

Fig. 1. lllustration of the critical moment of digence of trajectory histories of two initially srposed
billiards with Ny,=128, &, =23 and R\=0.33. Calculations were stopped just before hjswecorrelation.

Straight lines show velocity vectors when the distabetween red and blue balls exceeds 1 pixel.

After this critical step, the distance separating tcoupled balls (the blue and red
balls in figure 1) suddenly increases and the tillmiul balls are no longer superposed on the
screen; this occurs when the differeateexceeds an average value of 1 pixel. At thisestag
our calculations have to be stopped because ib i®mger possible to synchronize the two
billiard balls. Moreover, it is obvious that aftédris step, the overall information rapidly
decays to zero, for two reasons. First, the vetogctors of diverging coupled balls become
extremely different and second, the resulting oginta effect quickly spreads to the rest of

the billiard. Thus we can estimate that after artskelay, shorter than the average time

8



required for a single ball to cross the table,thé balls have completely lost their phase

information.

We will henceforth ignore this phase of contagibattfollows the critical step by
considering that the billiard's history becomeseatadnined once the distance between two
balls exceeds 1 pixel. For a given quantgnthis critical step is then considered as a
transition from classical to quantum states ofidmdl balls, since after this moment we
observe the coexistence of multiple possible hissor So the determination of the average
delay before reaching this step has been the nwiosfof our study. This delay is a
dimensionless value that is equal to the averagebeuNc of shocks per ball prior to the

transition.

An example of the variation dfic with & is illustrated on Figure 2, where each

critical step is the moment when the two trajee®iithe blue and the red) begin to diverge.
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Fig. 2. A computed example of four couples of simposed ball trajectories. As they originally oriffer
from between 2 to 2% pixels, the blue one is not visible before reagtttre critical step where a divergence or

decorrelation occurs. Note that each divisios,0by 2°is just delaying this critical step by 2 or 3 skec

On Figure 3 we present the results of our sta#istgtudy for two methods of
calculation, the first (unbroken lines) taking iraocount the shocks with borders and the
second (dotted lines) using a periodic billiard véheach ball leaving the game returns to the
other side with the same velocity. As the first noet has a faster calculation time, we applied
it for our global statistic where all values of pirameters were tested. The results presented
on Figure 3 have been calculated with a void ratjoal to 0.33 and a numbkb of balls
ranging from 8 to 512. We observe a good corratatietween the two methods of
calculation for high values dib, which is explained by the reduction of the cuahédfects.
We also observe an approximately linear evolutibrNo versusLogx(Nb) for both cases
which supports the qualitative results of Figureb@t a very slight decrease of the slope
towards high values dibis also to be noted, testifying to a probable loear evolution for
Nb > 512. However, due to the important statistibattiiations, this result does not allow us
to determine a robust asymptotic evolution ableexplain the behavior of the curves for
higher values oNb. For & = 2° the average number of shocks reaches the mininaioe v
of Nc=1. This minimum is not zero because when a divergeccurs we stop the calculation
and memorize the corresponding number of shockshnik at least 1, so thidc average
cannot be less than 1. In order to calculate amasbn of the critical time we then have to

consider the instaMc-1.
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Fig. 3. Results of statistical study with two lailil models, the first one (unbroken lines) by tgkimto account
shocks with the borders and the second one (dditted) using a periodic billiard: border effectscbme
negligible forNb>128. We observe an approximately linear evolutibNc (critical instant) with Log2{b) and
Log2(&y)

To reach the valuBlc=1, a single shock is sufficient for the wholeibitl, provided it
is a diverging one. As it is the case &= 2° andNb > 256 (see Fig 3), we can expect that
for higher values 0§, the possibility exists for other curves to crdss horizontal axifNc=1
whenNb is high enough. In order to verify this point weoated a new calculation method
with the aim of greatly reducing computing time kawoiding the calculation of

approximatelyNt x Nb x Nc shocks, wherglt is the number of statistical tests.

This new method consists in a two-balls model whegeconsider all geometrically possible
shocks to calculate the velocity dispersion proliteds. For this purpose we could first
calculate the probability for each shock occurramgl then consider partial derivatives with
respect to angle and position so as to calcul&doital dispersion function. As this analytical

method was extremely complex we preferred to usedoact simulation of real billiards to
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calculate the global distribution of velocity dispens, by using a very large set of randomly

initiated calculations corresponding to hundredthofisands of shocks.

We calculate the dispersion function in the fornihaf following histogram &

A, =128+ 4L092(MJ (12)
|\/out1 _Vout2|
1 —Vin2| and |\/Ouﬂ —Vout2| are the modules of the velocity differences betwasupled balls
before and after shocks. The 128 and 4 coeffisiehthe relation (12) were chosen in order
to work with integer and positive values of the@ssa and to get a sufficient set of sampled

values on the horizontal axis.

Figure 4 illustrates the dispersion functions tivat obtained for various void ratios
ranging from Rv=0.33 for R=16 to Rv=0.02 for R=1heve R is the radius of billiard balls

expressed in pixels.

45

| Log(Ne)

35 7

Fig. 4. Distribution of the variation of velocityiffifrences (velocity dispersion) calculated for ivas void
ratios obtained by decreasing the radius R ofadliballs from 16 to 1. Note the important increase
differences of velocity when the void ratio augnserwhen R varies from 16 to 1 the average valuthef

distribution varies from 0.1 to 0.001.

Figure 4 shows that when the void ratio decreass®s 0.33 to 0.01, the average ratio of
velocity differences, after a shock, increases fedraut 10 to 1000. This can be explained by
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the fact that decreasing the void ratio increasdkdurvature and thus velocity dispersion.

We will develop some fundamental consequencesi®ptbint during the discussion.

We also note that for the higher void ratio (0.88 R=16) the dispersion function
takes a triangular shape with two asymmetric slapeshich we estimated the slope values
of Su=2.2 andSd=-5. The top of this triangle is the most probald&ie ofAn, approximately
corresponding to a dispersion factor Rc=1, meanmglispersion at all. Note that the slope
differences cause A to be less than 1 most of ithe,tmeaning that shocks are mostly

dispersive.

We have exploited the characteristics of this glarcurve to calculate the evolution
of Nc for higher values oNb (until 2') and lower values o, (until 2*°). To valid this
calculation we first verified that the dispersioistdbution remained invariant in respect to
Nb as long as the void ratio remained constant, am@lgo verified this invariance whel
increases from its lower scaldR ~ 2°°) to the higher one4P ~1 ). This invariance can be
explained by the fact that the higher valuedBfis low enough compared to the radius of the
billiard balls R=16).

We used this triangular distribution to extrapolate void ratio 0.33 simulation until
2'" ~ 130.000 balls by taking an initial velocity @ifence equal teg, (as & is also
guantifying velocity for adimensional time). We theuccessively multiplied the difference
by different ratios randomly chosen in respect heirt distribution. We stopped these
operations when the critical step was reachede(diffce > 1 pixel) to collect tHéc value.

We repeated this process as long as necessarijgot @statistically robudtic average.

13



30

Nc

2 balls modelized simulation
2 Log(g;)=5,10,... 45

20

=»===== N ballsreal simulation
-Logx(s;)=5,... 35

15

10

T~ ———e Linearextrapolation

- 30
3 9 17 Log;(Nb)

Fig. 5.Nc variation curves versus Lg@Nb) et -Log(&;,) for the void ratioRv=0.33 : Unbroken lines represent a
simulation using a two-ball statistical model (witlangular velocity dispersion function). Dottkdes on the
left represent the real simulation using all shecklculations. Dotted lines on the right represent a

extrapolation for making an approximate estimatthefNb values for which the axidc=1 is reached.

We calculate tHéc average for 9 values & ( 2°to 2*°) and 16 values dfib (2° to
2'7). The figure 5 shows the global result of ourdgtuvhere on the left we added dotted
lines representing the result of our precedentystanntd on the right a hypothetical linear
extrapolation forNb > 2! that we will discuss further. We note a roughrespondence
between the results of the two different simulagicthough the decrease witbg,(Nb) tends
in both cases to produce similar slopes for higladues ofNb. The main differences between

these results are observed for high valugsadnd low values oé,.

These differences can be explained by the limitechputing precision of 64-bit
which introduces arbitrary information at the lowessolution. Such an error, negligible at
smallNc, increases however with the number of shocks sititkein propagated to higher level
bits until theg, resolution is reached, thus the calculations bewmibe biased. So the lower
the & value, the sooner the bias begins and keeps oeasiog with the average number of

shocksNc. The consequence is that we have to considemitvdalls model as more reliable
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than the real simulation because only the lattaffescted by this bias by calculating all the

shocks.

Now the following question is to evaluate the pb#isy for extrapolating these
results so as to find out the asymptotic behaviolocurves whemNb — «. We have two
objective reasons for arguing whatewgr all Nc curves bisect the axiSc=1 instead of
tending towards th&lc=1 value. The first reason is that we can obseneg the first three
curves calculated fog, =2°, g =2"° and g = 2"° respectively bisect the axidc=1 when
Log(Nb)is approximately equal to 9, 12.5 and 16 (figureThle second is that we can show
on Figure 6 that whateveq, it is always possible to find a value bb for which the
probability for two trajectories to diverge aftemlp one shock is around 100%, so that the

result isNc=1.

Figure 6 illustrates the probability distributioasNc wheng, varies from 2 to 2*°,
Note that the distribution curves are approximageyallel wherNc—1, so that they always
bisect the vertical axiblc=1. This property, which means that the divergemwbability is
never equal to zero, whatevdc, can be explained by the existence of a bordedas® in
the behavior of coupled balls: a shock occurs fog of them but not for the other. Figure 6
shows this borderline case for two balls with tlzame velocity and two perpendicular
trajectories, so that they either collide or justzip past each other when their center axis is at
45°. Observe that in the case of collision or grgzthe velocity values are totally different

whatever the;, valug which explains why a divergence always remairssiide forNc=1.
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Fig. 6. Top left, logarithm distributions of thegtability Pd of divergence after a number of shoditg in
function of g, . At the bottom, illustration of the borderline eashere two balls are just touching which explains

why Pdis never equal to 0, whatever tKe value.

We conclude that all the curves plotted on Figulesgct the axis Nc=1, meaning that
to adopt a linear model to express the decreaddcoivhen Nb tends to infinity is well

justified:
Nc ~ A + B Logé) + C Log(Nb) (13)

A, B and C are approximately constant values itrictve intervals of Log{c) and Logg).
For example, if we suppose that Lbifpj>10 and Logé)< 50, we can determinate the A,B

and C values:
Nc ~ 2.8 +0.21 Pa - 0.35 Log(Nb) (14)

Where Pa = (-Log)) = (Pi — Pc) is the additional information relaito the precision
corresponding to the figures after the decimal pointhe phase coordinates. We can then
find that when we incremeiita and then double the precision, we only have tdiplylthe
number of balls by 1.5 to keep the same criticatant for which the billiard becomes

indeterminist.
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This means that for a giveic, on which depends the maximum of reliable infoiorafNb x
Nc x P¢ that is possible to calculate for a given bRl being the precision required for
calculation, the additional information that ne¢albe included in its initial conditions is also
proportional to the total number of balls. We céent reformulatdb (10) by using an
adimensional time N corresponding to the averagebau of shocks per ball and also by

usingPc andPa, for which we haveRa + Pg < 64 bits:
Ib = Nb N (Pa (1 -N/Nc) +Pc) ifO<N<Nc (15)

Thus, the formula (15) expresses the fact thatase of the information of the billiard
ball is linear, which can be explained by a Lyapudspersion relative to each shock and to
the fact that we consider here only the global aged statistical effect. We will recall that
the residual informatiotb = Nb x Nc x Pds also lost wheMN > Nc and is lost even more
quickly, due to the contagion phenomenon, but wewcaquantify this loss after the critical

step because we stop calculations.

It appears from (14) and (15) that for only onegghaoordinate the information loss
is equal toPi/Nc and increases with Loyp) for a givenNc value. For the values @f that
we sampled and for low values Bib, this loss is around 3 bits per coordinate. Fighire
illustrates the variation of this loss f8a = 30 bits and’c = 10 bits, sd”i = 40 bits: note that
whenNb increases from 200 to 5000 the information lossmgrfrom 3 to 5 bits per shock
and per coordinate (30/10 to 30/6). On this figuttee information relative to initial
conditions is represented in green and the infaonatelative to the shock calculations is
represented in blue. Each rectangle corresponil® twts, so that we can easily calculate the
information contained in one ball trajectory of Blaccessive coordinates at the Pc precision,

which varies from 100 bits to 60 bits lds decreases from 10 to 6.

Now if we compare the quantity of information cdngl in the calculated trajectories
with that contained into the initial conditions, wbserve the following paradox: this latter
guantity can sometimes be higher than the calallate. This is explained on the one hand
by the fact that the initial precision can greakceed the one required (40 bits here, instead
of 10 bits) and on the other by the fact that itleorto memorize the trajectory of one ball, we
simply need to memorize successive positions becaetocities can be deduced from
positions. This is not the case for initial conalits for which we need both positions and
velocities. In Figure 7 we have shown tharderline case for which the paradox appears: for
Nb = 1000 balls and theNc = 8 the trajectory information, equal to 8 x 18B§& bits, is
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exactly equal to the initial condition informatiarhich is 2 x 40 = 80 bits. As it is difficult to

express this paradox in a few words, we decidezhkidt “the demon of determinism”.

Pc = 10 bits & Pi = 40 bits (& =2-%)

UNUN0NR0, N0HRGURQ
I

Nb = 5000

Fig. 7. lllustration of the emergence of the “dentdrdeterminism paradox” for one phase coordingtewiNb
increases. Colored rectangles are 10-bit blocksefGblocks correspond to the information requicadirditial
conditions whose precision =40 bits. Blue blocks correspond to the calculatéormation whose precision
is Pc=10 bits. Note that wheNb=1000 the initial information is equal to the cditad information. Red blocks

correspond to the excess information that occursrwthe calculated value is lower than the initiz¢.o
The condition for this paradox to emerge is théfeing:
PcNcNb<2PiNb => Nc<2Pi/Pc (16)

As N tends towards 0 wheaxb tends towards infinity, this inequality is systeioally
satisfied above a certain value b. So, we conclude whatever the precisi®isand Pc,
there always exists b threshold above which the billiard becomes indeieist. Figure 8
illustrates this generality since it shows the tipwints for the paradox to be realized. For a
fixed value ofPc and different increasing values Bf, the limit points are approximately
aligned along a straight line whose slope is alwzystive, becauslc necessarily increases
with Pi. It is also interesting to note the diminution ¢ when we increas@c while Pi

remains constant.

18



30

Nc
25 Pa = - Log,(e,)
.
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Nc =2 (Pa + Pc)/Pc

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 LUQ:(Nb)

Fig. 8. lllustration of information paradox genésahnd its emergence conditions: square pointeespond to
Nc andNb values for which initial information is equal talculated information: wheRi is increasing, there is
always aNb value for which this limit situation occurs and fa givenPi, the effect of increasingc is to
increase theNb limit value, but this also reduces the durationvafid determinist calculations (number of
shocksNc)

To conclude this numerical study, we wish to foongwo points:

First, whatever the size of the elementary spaeatgun, however small it is, the loss
of phase information of a billiard game becomesohlis above a certain time or average
number of shocks per ball, rendering the game erdenist or behaving as if the balls were
guantum particles. This indetermination resultingnf chaos is well known, but we have

pointed out that the deterministic time decreasaf@ number of balls increases.

The second point that we call “the demon of deteism” seems to us more
important, because the validity of deterministidcakations (with native or statistical
equations) is often considered as depending onlyaosufficient precision of initial

conditions. But we have shown that whatever thiscision, however small is it, there is
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always a critical number of balls for which theamhation that is necessary to memorize
initial conditions is superior to the informatioarcesponding to valid calculations. This point
seems critical to us because it appears to rafsadamental problem about the validity of
information coming from equations, whether they @aéve or statistic, even in a continuous

space.
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1. DISCUSSION

The concept of physical information defined by i)nvolving an epistemic status of
uncertainty in classical physics which is no moiack of information of the observer, but a
lack of information of the universe itself. Withendeterministic framework, uncertainty is
generally considered the result of the unpredititgbnherent to a limit of precision of initial
conditions. In this paper, we interpret uncertaiatylinked to physical information and no
more to observer information, because it is theseqnence of our hypothesis that density of
physical information is a finite quantity. This égsily conceivable into a discrete universe,

but more difficult to understand into a continuane.

Our results question the implicit idea that theed®minism of a system could be
guaranteed by unlimited precision of initial comahis, even into a continuous space. Indeed,
we have raised a paradox that we qualify as a “demiodeterminism” inasmuch as it
expresses a strange situation apparently inhevergrtain chaotic or dispersive systems: the
valid information that can be extracted from a mtdde model that calculates their evolution
through time has a maximum that can be much lohan the entire amount of information

contained in the initial conditions.

A way of by-passing this paradox is to denouncelaef one, by arguing that the
information calculated by our determinist modelréslly superior to the initial conditions
information, but that a part of it spreads outeakls of resolution lower than that required. In
Figure 9, this part corresponds to the white regiemwhich complete the triangle delimited

with green and blue 10-bit rectangles.

However, not only could this overly low resolutiafata not be required, if for
example non observable, but it could also have ewses at all, since according to our
hypothesis the maximum information contained in apgce volume is finite and could thus
limit the initial information. Another delicate pdiis that even if space is continuous and
phase information is an unlimited quantity, thet fdoat the calculable and valid information
can be much lower than the information that hasetintroduced for initial conditions, raises
a fundamental problem. Any predictive model shantited be able to provide a calculation
which plays the role of a data compression algorithn particular, it should be able to
compress the data relative to the trajectories afshin a billiard into a set of initial

conditions occupying much less memory, yet we olestre opposite.

21



We then qualified this paradox as a “demon of deieism” because it raises a
problem which is much more problematic than thel webwn unpredictability of chaotic
systems, which let us think that the determinismaogystem would be guaranteed by
unlimited precision about the initial conditionwe consider this unpredictability from the
angle of physical information, we observe a craityasion, in the sense that observable
information in a universe of information could binitely low compared to the physical

information that would be necessary to assurexittence.

To avoid this awkward situation while keeping a gibgl sense to information, the
solution that imposes itself consists of respectig hypothesis of a discrete space and
physical information whose density is limited ineey space volume. Now we have shown in
the introduction that this hypothesis leads as rectliconsequence to the Heisenberg
principle. This serves to legitimize our interptetn, which consists in stating that the

indeterminism that emerges in a billiard after ¢héical instant is actually quantum in nature.

Our observations relative to the high increase ispefsion (figure 4) when we
increase the void ratio or decrease the balls saduis to support this interpretation. The
smaller the radius of the balls, the more importhatloss of information caused by a shock.
If we could generalize the validity of our resulbsparticles whose interactions are no longer
elastic but electromagnetic, then the quantum ardehism would itself appear to be a direct
consequence of the space geometry. However, wanatifocus on this subject in the present

paper.

Whatever the origin of quantum states, our hypashethat physical information has
a finite density - can explain the difference betweguantum and classic behavior: any
system becomes a quantum system when it losesh@sepinformation, this loss being a
phenomenon that characterizes highly dispersiveesyssuch as those containing numerous
objects that interact with each other. So the mfation lost by a system has to be considered
as a really lack in the purely classical physicadlity, until a compensatory mechanism
introduces information again, allowing the system restore classic behavior without
superposed trajectories. In quantum physics, theshanism involves the two aspects of

decoherence and observation.

Decoherence mechanism is due to the interactiomdset a quantum sub-system and
its environment. This environment is usually thassical reality of a laboratory or an

experiment that can be considered as a non quasystem enclosing the quantum sub-
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system. The result of their interaction is that $hié-system cannot maintain quantum states
that are not coherent with the well defined statiethe enclosing system, thus resulting in a
reduction of the superposed states of the sub+aystiis can be considered as a transmission
of physical information from environment to a quantsub-system that therefore becomes a

classical system, at least temporarily.

The observation mechanism is a direct way of infogmuantum reality, resulting in
a collapse of the quantum wave of the measuredtlgattat is very well known and even the
center of an epistemological debate which we aheick, the problem being that the source
of information that informs the reduced states nknown: Quantum randomness? Hidden
variables? Extra dimensions [24]? According to Amto Suarez, this information is a
guantum randomness that could be controlled fronside space-time by free will [25].
Whatever its source, we find interesting to proptss observations could be a way to
transmit information from this unknown source temsihing that is observed, which is the
case for environment itself. The major part of miation transfer would then be due to the
process of decoherence, initiated by already inémfrparts of the universe (that don't lose
their information). This could explain why realiglways appears to us as purely classical,
knowing that only the parts that are simultaneousbn observable, dispersive and

completely isolated could maintain quantum states.

With such a proposition, the irreversibility of quam measurement would have the
same origin as the irreversibility in classical piog: a loss of information during
interactions, which quantum randomness introdugedidservation is not able to recover as
before. This loss would be all the more fast as dimension of objects (particles, balls,
molecules...) would be small. So irreversibility appe to be directly connected to our
fundamental hypothesis that the density of physicébrmation is finite and limited
everywhere. Note that such an hypothesis is esdeiitiwe consider to live into a
“cyberspace” of information where anything is tlesult of a “bit with bit” calculation, like

in computers.

Our model of physical information is not withoutpact on our habitual conception
of reality, because it calls to consider our obabl reality as a "cyberspace" of information.
A minuscule part of this reality would be informddectly by observations and the major
part by a cascading decoherence processus. It vgoblsist only quantum systems which are
not informed because they are completely isolateth@y lose their information too quickly.
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In particular, it could be the case of isolated,gafere mixing interactions between

molecules are responsible for increasing entropy.

In our model, entropy and information are equival@oncepts and opposite
guantities, and so the increase in entropy dutiregnixing process corresponds to a loss of
information or to quantum behavior of gas moleculdss explains the indiscernability of
molecules that is only admitted today as a prircgiid it offers a clear solution to the Gibbs

paradox by confirming the Pauli hypothesis of randuhases [21] in statistical physics.

From this point of view, therefore, it is interesjito reconsider the interpretation of
Brillouin [22] and Szillard [1] about Maxwell's Dam: they exorcise it by saying that any
observation of a molecule introduces informatioto ithe system that decreases its entropy
with an energetic cost due to the measurementat éxjual to kTIn(2), although the physical
sense of this information does not appear clearlyhis interpretation, which maintains a
subjective character. This subjectivity disappeéfatise molecules display quantum behavior,
because the information brought to them regain$ysipal sense which is the phase state

reduction through quantum measurement.

We can thus summarize the physical sense of infimmastablished by our model in

two points:

(1) The information lost during multiple interaat® such as mixing is really lost by the
physical system through a dispersive mechanismgbaerates quantum phase states, thus

explaining its irreversibility.

(2) The physical information gained by a quantystesm which becomes at least partially a
classical one, is gained directly by means of aseolation or measurement or indirectly by
means of the decoherence process during which xXbevi@ system transmits physical

information.

The difference we make between directly or indiseecquired information comes
from the fact that in the first case of observatitihe source is outside the universe of
classical information, taking into account the md@s of quantum wave function collapse:
the information acquired in a reduction of phasgest does not exist before the measurement
or it should depend on non local hidden variab®3.[This is not the case with the process
of decoherence that involves only information alyeaontained into the local and classical

environment of the system.
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Observation thus appears to involve a mechanismighstill poorly understood but
able to introduce new information into a computalméverse, meaning that this information
is not already included in this classical universgherefore we conceive this universe as a
sub-universe immersed in a quantum global unives® containing the source of
information that could be transmitted by observagioln a certain measure that remains
unknown, this could compensate for the natural lo$sinformation that affects the

computable universe.
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V. CONCLUSION

The heart of this article is an asymptotic study stétistical results of digital
simulations of a billiard proposed as a simple nidde a better understanding of the
mechanisms of loss of information or increase ofagry in a gas. Though purely technical, it
has the fundamental advantage of highlighting aaga we call “the demon of
determinism”, something that causes problems whetryvto find a physical sense for phase
information: not only should we accept having taldeith calculation models that may
consume more information than this we are tryingdtzulate, but also, in order to preserve
absolute determinism physical information shouldrifmite in closed parts of space. Now if
we consider that physical information is really guféed by a quantum kiIn(2) in relation to

entropy, this conclusion appears unacceptable.

We then decided to postulate that the density gfsighl information should be a
finite quantity everywhere, by giving it a purelyassical sense, something that had the
advantage of being simpler and more intuitive thlgorithmic complexity. What is notable
here is that the Heisenberg principle can be ing¢ed as a direct consequence of these
hypotheses. This then leads us to suggest atimn$iom classical to quantum states in
order to understand the loss of information and thend the question of determinism back to
guantum mechanics. It then becomes interestingt® that this suggests quantum mechanics
could be a natural extension of classical mechamios at all incompatible or conflicting,
since purely classical models seem to fail to gvphysical and objective sense to phase

information in a space that is not quantified.

By using our physical information model to clariffje famous thermodynamic
ambiguities raised by Gibbs and Maxwell, we couddify its pertinence and then conclude
that a classical dispersive system could losehisigal phase information when it is isolated
from any process of quantum reduction by decoherendirect observation. Any phase state
could then become at least partially a quantumamkagain recover its physical information
when it interacts with an “informed” environment @armeasuring device. However, where
this information is directly brought about by obssion, according to quantum mechanics it
could be not already included in our classical arse of physical information. We could then

claim that observation could add physical informatio the universe.

We may well wonder whaibservationand its mechanism actually are, as well as the

information source that could inform our classicahlity through observation, but these
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guestions are already part of the debate in quamechanics. Our own sentiment is simply
that our classical reality could be immersed inaarglobal quantum world where notions of
space, time and causality could be upset. Withpetwlating further, it remains important to
notice that this interface function of observatioould question the second law of
thermodynamics, according to which the entropyhefglobal universe should only increase.
Which global universe? If we consider our univeselassical information and the physical
sense of entropy that emerges from our model toabeneasurement of quantum
indetermination, it turns out that observation @nhen consciousness could compensate for
increase in entropy, thus explaining why it coudgtiéase or remain stable in living systems.
However, we have no idea at all about the extenthizh it could happen, and it is possible
that this contribution could be minuscule and ewegligible, as everything leads us to
believe that the classical world around us is alygzerfectly informed.
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