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The experimental confirmation of Landauer’s principle and the emerging concept of a 

computational universe make it more and more crucial to understand the physical 

sense of information, as it has an intrinsic relation with observer knowledge that is 

often rejected as subjective.  In this paper we propose an objective definition of phase 

information in a purely classical computational universe with quantized phase states, 

this quantization being imposed by our fundamental hypothesis that physical 

information has a finite and limited density, responsible for the irreversibility. We use 

a statistical study of results obtained by numerical simulations of a billiard to 

highlight an excessive and paradoxical loss of phase information that we solve by 

involving a ”classical to quantum transition”. After discussing the pertinence of such a 

transition to clarify some problematic aspects of statistical physics, we conclude that a 

computational universe should automatically lose phase information through time in 

an irreversible way, which could be compensated by a gain of physical information 

due to observation and decoherence. 

 

I. INTRODUCTION 

One of the fundamental problems of mainstream physics is the question of how to 

define physical information, which is very closely linked to entropy and energy. Whereas in 

quantum physics some part of information provided by a measurement can be observer 

dependant, this is not the case in classical physics where all phase states are considered to be 

deterministic, so that their intrinsic information should necessarily be independent of 

observation.  In support of this objective conception, the idea that information is physical - 

based on the fact that erasing one bit corresponds to the dissipation of k log(2) entropy –  as 

proposed early on by Szillard [1] and highlighted by Landauer [2], has recently been 

confirmed experimentally [3]. But the information theory of Shannon [4] has introduced 

subjective entropy [5] defined using probabilities and quantifying all types of information, 
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such as that contained in a message. Consequently, the attempts to define physical 

information as a genuine physical quantity by avoiding the trap of probabilities [6], that 

inevitably represents a subjective lack of knowledge, have resulted in a lot of confusion 

amplified by the eternal debate about how to solve the Maxwell's Demon problematic [7] [8]. 

Today, one widespread opinion is to consider physical information as related to the 

computational complexity of a system [9], for example by expressing it as the entropy of a 

cellular automaton [10] that leads to its calculation. This modern concept of information has 

the advantage of being more objective and of satisfying the initial concept that information 

has to come in bits. 

Since we disagree with this opinion, in this paper we propose a definition of physical 

information [11] which is relative to states and phases of elementary objects of a system. We 

focus on phase information of objects like particles, molecules or balls and we define their 

information as the number of bits necessary to memorize the phase coordinates of objects in a 

discrete phase space. Note that the idea of a truly discrete space is seriously considered in 

physics, for example by Roger Penrose who recently argued in this sense by saying that “it 

might turn out that a discrete picture [for a computational space-time] is really the correct 

one” [9].  As we do not know the inner structure of such hypothetical space, we have chosen 

for our study a cartesian grid model. Our purpose is to show that whatever the grid precision 

or space quantum, we cannot avoid a loss of information - associated with increasing entropy 

- that is independent of space quantum and observer. This would be a genuine loss of 

information from the universe particularly likely to occur within non linear dispersive 

systems. From a purely classical point of view, this means that phase states in such systems 

could become partially indeterminist like in quantum mechanics. However a deterministic 

framework could be reestablished if a loss of classical information was equivalent to a 

transition from classical to quantum states, and this is what we want to argue for. This kind of 

transition has already been observed, for example in some non linear systems in 

nanotechnologies [12] or with quantum dots [13].  

According to Beckenstein [14], we make the fundamental hypothesis that a discrete 

computational universe has a finite density of classical information everywhere. The 

transition from classic to quantum behavior would then be caused by a decrease in 

information density.  Consequently the frontier between classical and quantum states of 

particles would not be clearly defined because this transition would be continuous, as 

confirmed by a recent experiment [15], thus introducing the possibility that quantum behavior 
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could affect classical macroscopic objects. Some well-known indicators of this behavior can 

be seen for example in interferences of giant fullerene molecules [16]. Let us also quote the 

Gibbs paradox [17] that is only clearly solved in the context of quantum statistical mechanics 

for which the principle of indiscernability of objects is inherent to their quantum nature. But 

what about classical objects? 

In quantum mechanics, indeterminacy is quantitatively characterized by wave 

function, which is a probabilistic distribution of the measurable values of a given observable. 

The epistemic idea we are following is that this probabilism has to be considered as a 

fundamental indeterminism and not as the result of quantum model incompletion. This idea 

has recently been reaffirmed by M. F. Pusey et al [18] in a paper arguing in favor of the 

intrinsic reality of the quantum state. Another aspect of quantum indeterminacy is contained 

within the Heisenberg principle, relating the standard deviations of position p and momentum 

q as expressed below:  

∆p∆q ≥
h

2ππππ
               (1) 

Here too, the principle of indetermination is subjected to various interpretations, the 

original one arguing that it is the result of an inevitable disturbance of measurements. 

However, the more fundamental interpretation of this inequality, asserting the intrinsic 

indeterminism of quantum states, has recently been confirmed by an experimental result of 

Lee A. Rozema et al that was obtained by weak measurements [19].  

According to our hypothesis, we consider that the intrinsic uncertainties ∆p and ∆q of 

any classical or quantum object are variables that result from a fundamental limitation of its 

phase information. This limitation can be expressed using the maximum uncertainties ∆pmax 

and ∆qmax that can be deducted from the geometric and energetic characteristics of the 

system. So we can express the phase information in the form: 

I pq_ det = Log2

∆pmax∆qmax
∆p∆q

 

 
 

 

 
             (2) 

The ratio between brackets corresponds to the objective number of microstates of the 

object. Note that there would be no sense counting states under ∆p and ∆q because it would 

quantify a real uncertainty or lack of physical information. In the case of a quantum particle 

we know the maximum of residual information that the particle can acquire:  
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I pq_ ind = Log2

∆p∆q

h

 
 
 

 
 
               (3) 

If the phase information of any object was unvarying, we could express it in the form: 

I pq = I pq_ det + I pq_ ind = Log2

∆pmax∆qmax
∆h

 
 
 

 
 
           (4) 

Our hypothesis, is then to consider that, for any object, the physical phase information 

is expressed by Ipq_det  instead of Ipq, giving it an exclusively classical sense.  The possibility 

for Ipq_ind, Ipq_det  and Ipq_det to vary is equivalent to the possibility for classical objects to lose 

information, and the aim of our study is to highlight and quantify this loss. In support of this 

definition of phase information, when we compare (1) et (3) we can interpret the Heisenberg 

Principle as being a simple condition for phase information to have a maximum, according to 

our hypothesis:   

I pq_ ind ≥ 0⇒ I pq_ det ≤ Log2

∆pmax∆qmax
∆h

 
 
 

 
 
           (5) 

This way of defining physical information can be understood as the equivalence 

between a classical and a completely informed state, and between a quantum and partially 

non-informed state, meaning that the transition between classic and quantum states would be 

progressive, as revealed by recent Nobel prices Serge Haroche and David Wineland. It 

permits also to clarify the problem of irreversibility as being linked to the variation of 

physical information, which is a loss during the classical to quantum transition and a gain 

during the quantum to classical one, with no possibility to recover the same information as 

before. 
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II. MATERIAL AND METHODS 

We present a numerical method to calculate the evolution of global entropy S and 

individual information (2) during the multiple interactions of classical objects such as balls or 

molecules. First, we have to establish the expression of S from the summations of Ipq_det  in 

our Cartesian coarse-grained simplified space structure with quanta εp and εq for distance and 

momentum (for which we would have εp εq=h  if the space really had an elementary structure 

of this type). 

A discrete quantification of phase states was proposed very early on by Gibbs [16] 

using the coarse-graining method to explain the monotonous growth of entropy S within a 

mixture before achieving equilibrium. However, the loss of information (-∆S) highlighted by 

this method cannot be considered as a genuine loss from the system as long as the basic 

equation from which it derives contains subjective probabilities pi : 

S = −k pi
i

∑ ln pi( )             (6) 

Where k is the Boltzman constant and pi  are the probabilities of microstates i of the system.   

For our calculations we have chosen a two-dimensional billiard system containing 

identical incompressible balls. We calculated all the elastic shocks between billiard balls and 

with the borders, beginning with random initial conditions where all positions and 

momentums were perfectly known, meaning ∆p = εp and ∆q = εq ( i. e. completely informed 

phases).  Since we were unable to work with realistic values of quanta εp and εq, we 

considered values varying from 2-5 to 2-35 fractions of the used resolution to quantify our 

results, whose positions were visualized in a 4096 x 4096 square-pixels billiard game.  

We used an asymptotic analysis to estimate the results for much lower quantum values 

and also for high values of the number of balls Nb. Our calculations were repeated as long as 

necessary to obtain statistical results that were robust and independent of the initial 

conditions. At initial conditions where ∆p = εp and ∆q = εq, all microstates are equiprobable, 

so we can rewrite (6) in the form:  

 S= −k ln
∆pmax∆qmax

∆p∆q

 

 
 

 

 
 

Nb 

 
 
 

 

 
 
 = −Nbk ln 2( )I pq_ det            (7) 
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In our system we choose ∆pmax = 4096. As for ∆qmax, it is limited by the sum of our initial 

moments. When we calculate the shocks, ∆p, ∆q and then S vary as a consequence of a 

chaotic dispersion - or Lyapunov effect [20] - that shocks produce in the trajectories.  

In order to calculate the evolution of S we had to overcome two difficulties. The first 

is that the variation of ∆p and ∆q is not visible in terms of Ipq_det  bits because the number of 

bits that is used to save any data is a constant which for our calculations is equal to 64 bits. 

The second difficulty, more problematic, is that at each time the real information of any result 

decreases while maintaining the same number of bits, it accumulates more and more false 

information, due to the limitation of computer precision that produces inconsistent bits at 

lower scales that end up corrupting calculations at the higher scales.  

To remedy to the first difficulty, we calculated two different trajectories for each ball - 

as if they were in two distinct billiards - with an infinitesimal difference on their initial 

positions equal to ±εεεε p , the plus or minus sign being randomly chosen for each ball and axis 

of coordinates. We approximated ∆p by the difference of position between the two 

trajectories at identical times and ∆q by the difference of velocities at the instant of shocks 

with the same ball, these instants being slightly different. 

To overcome the second difficulty, we worked with values of εp ranging from 2-5 to 2-

35 by successive divisions by 25, avoiding values between 2-40 and 2-55 that could falsify 

calculations with the effect of inconsistent low-level data after only a few shocks.  We 

estimated that the using of only 20 to 50 bits compared to the maximum 64 permitted (14 bits 

never being used) could ensure sufficient reliability for our results over an average time of 

respectively 25 to 10 shocks per ball. 

From the calculated ∆p(n) and ∆q(n) values, where n is the number of shocks, we can 

derive from (7) an expression of the global information of the billiard by dividing this 

expression by the entropy quantum k ln(2), changing to logarithms in base 2: 

Ib = Log2
n=1

Nb

∑ ∆pmax∆qmax

∆p n( )∆q n( )
 

 
 

 

 
 = Log2

n=1

Nb

∑ ∆pmax

∆p n( )
 

 
 

 

 
 + Log2

n=1

Nb

∑ ∆qmax

∆q n( )
 

 
 

 

 
         (8) 

Where: 

∆p n( ) = X n,1( )− X n,2( )( )2
+ Y n,1( ) −Y n,2( )( )2

      (9) 
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X (n,i) and Y(n,i) correspond to the coordinates (X,Y) of the trajectory i=1, 2 of a ball after n 

shocks on the billiard i. The expression of ∆q(n) is similar to ∆p(n) : replace positions with 

velocities. 

We noticed that when we follow the two trajectories of the same ball, whose initial 

position coordinates have a difference that is ∆X = εp and/or ∆y = εp and with identical initial 

velocities, the first shock between one ball and another creates a difference of velocity that 

increases with each subsequent shock. As a result, it is useless to introduce an initial 

difference of velocity whose effect is less significant than that strictly produced by the 

difference of positions. We can conclude that it is pointless to use two quanta εp and εq 

simultaneously, thus we opt for the only consideration of the position quantum and to ignore 

the effects of the velocity quantum, which leads to disregarding the second term of (8).  

For the same reason, it is pointless to use the position quantum to round up to the 

appropriate precision the results of calculating each shock - in respect to the coarse-grained 

grid - because the effect of this rounding-up on one trajectory is negligible in comparison to 

the effect of the initial quantum difference between the two trajectories.  So, our coarse-

grained calculation is returned in a study which consists of following the evolution of two 

quasi-superposed billiards, using the maximum precision permitted by the computer.  

However, a residual difficulty is the necessity of synchronizing the two billiards balls so as to 

optimize computing time.  

As results for each trajectory are highly dependent on initial conditions, we perform a 

statistical study by averaging the obtained values of ∆p for many initially randomized 

trajectories so as to calculate ∆pmoy and then to compute the following average variation of 

information:  

Ib = Log2
n=1

Nb

∑
∆pmax

∆p n( )
 

 
 

 

 
 = max Ib( )− NbLog2

∆pmoy

εεεε p

 

 
  

 

 
         (10) 

With:  

max Ib( )= NbLog2

∆pmax

εεεε p

 

 
  

 

 
  = NbPi           (11) 
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Where Pi   is the bit precision of initial conditions, which varies between 15 and 55 bits. So, 

our study consisted of calculating the evolution of ∆pmoy and for this purpose, we chose a 

time unit equal to the average number of shocks per ball. 

In addition to εp we investigate the influence of two other parameters, which are the number 

of shocks per ball and the void ratio Rv that play an important role in the loss of information, 

particularly the rate of the loss. 

The continuous decay of the information leads to the apparition of an important phase 

that is occurring when one value of ∆p becomes large enough locally to cause the divergence 

of the trajectories histories of the two-paired billiards.  This happens more precisely when the 

shocks of two coupled balls occur with no more coupled ones.  

 

Fig. 1. Illustration of the critical moment of divergence of trajectory histories of two initially superposed 

billiards with Nb=128, εp =2-35 and Rv=0.33. Calculations were stopped just before history decorrelation. 

Straight lines show velocity vectors when the distance between red and blue balls exceeds 1 pixel. 

After this critical step, the distance separating two coupled balls (the blue and red 

balls in figure 1) suddenly increases and the two billiard balls are no longer superposed on the 

screen; this occurs when the difference ∆p exceeds an average value of 1 pixel.  At this stage, 

our calculations have to be stopped because it is no longer possible to synchronize the two 

billiard balls. Moreover, it is obvious that after this step, the overall information rapidly 

decays to zero, for two reasons. First, the velocity vectors of diverging coupled balls become 

extremely different and second, the resulting contagion effect quickly spreads to the rest of 

the billiard.  Thus we can estimate that after a short delay, shorter than the average time 
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required for a single ball to cross the table, all the balls have completely lost their phase 

information. 

We will henceforth ignore this phase of contagion that follows the critical step by 

considering that the billiard's history becomes undetermined once the distance between two 

balls exceeds 1 pixel.  For a given quantum εp, this critical step is then considered as a 

transition from classical to quantum states of billiard balls, since after this moment we 

observe the coexistence of multiple possible histories.  So the determination of the average 

delay before reaching this step has been the main focus of our study. This delay is a 

dimensionless value that is equal to the average number Nc of shocks per ball prior to the 

transition. 

An example of the variation of Nc with εp is illustrated on Figure 2, where each 

critical step is the moment when the two trajectories (the blue and the red) begin to diverge. 

 

 



10 
 

Fig. 2. A computed example of four couples of superimposed ball trajectories. As they originally only differ 

from between 2-5 to 2-35 pixels, the blue one is not visible before reaching the critical step where a divergence or 

decorrelation occurs.  Note that each division of εp  by 2-5 is just delaying this critical step by 2 or 3 shocks. 

On Figure 3 we present the results of our statistical study for two methods of 

calculation, the first (unbroken lines) taking into account the shocks with borders and the 

second (dotted lines) using a periodic billiard where each ball leaving the game returns to the 

other side with the same velocity. As the first method has a faster calculation time, we applied 

it for our global statistic where all values of all parameters were tested. The results presented 

on Figure 3 have been calculated with a void ratio equal to 0.33 and a number Nb of balls 

ranging from 8 to 512. We observe a good correlation between the two methods of 

calculation for high values of Nb, which is explained by the reduction of the cushion effects. 

We also observe an approximately linear evolution of Nc versus Log2(Nb) for both cases 

which supports the qualitative results of Figure 2, but a very slight decrease of the slope 

towards high values of Nb is also to be noted, testifying to a probable non linear evolution for 

Nb > 512. However, due to the important statistical fluctuations, this result does not allow us 

to determine a robust asymptotic evolution able to explain the behavior of the curves for 

higher values of Nb. For  εp = 2-5 the average number of shocks reaches the minimum value 

of Nc=1. This minimum is not zero because when a divergence occurs we stop the calculation 

and memorize the corresponding number of shocks, which is at least 1, so the Nc average 

cannot be less than 1. In order to calculate an estimation of the critical time we then have to 

consider the instant Nc-1. 
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Fig. 3. Results of statistical study with two billiard models, the first one (unbroken lines) by taking into account 

shocks with the borders and the second one (dotted lines) using a periodic billiard:  border effects become 

negligible for Nb>128. We observe an approximately linear evolution of Nc (critical instant) with Log2(Nb) and 

Log2(εp) 

To reach the value Nc=1, a single shock is sufficient for the whole billiard, provided it 

is a diverging one.  As it is the case for εp = 2-5 and Nb > 256 (see Fig 3), we can expect that 

for higher values of εp the possibility exists for other curves to cross the horizontal axis Nc=1 

when Nb is high enough. In order to verify this point we adopted a new calculation method 

with the aim of greatly reducing computing time by avoiding the calculation of 

approximately Nt x Nb x Nc shocks, where Nt is the number of statistical tests. 

This new method consists in a two-balls model where we consider all geometrically possible 

shocks to calculate the velocity dispersion probabilities. For this purpose we could first 

calculate the probability for each shock occurring and then consider partial derivatives with 

respect to angle and position so as to calculate the local dispersion function. As this analytical 

method was extremely complex we preferred to use our direct simulation of real billiards to 
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calculate the global distribution of velocity dispersions, by using a very large set of randomly 

initiated calculations corresponding to hundreds of thousands of shocks. 

We calculate the dispersion function in the form of the following histogram An: 

An =128+ 4Log2

Vin1 −Vin 2

Vout1 −Vout2

 

 
 

 

 
         (12) 

Vin1 −Vin2  and Vout1 −Vout2  are the modules of the velocity differences between coupled balls 

before and after shocks.  The 128 and 4 coefficients of the relation (12) were chosen in order 

to work with integer and positive values of the abscissa and to get a sufficient set of sampled 

values on the horizontal axis.  

Figure 4 illustrates the dispersion functions that we obtained for various void ratios 

ranging from Rv=0.33 for R=16 to Rv=0.02 for R=1, where R is the radius of billiard balls 

expressed in pixels. 

 

Fig. 4. Distribution of the variation of velocity differences (velocity dispersion) calculated for various void 

ratios obtained by decreasing the radius R of billiard balls from 16 to 1. Note the important increase in 

differences of velocity when the void ratio augments: when R varies from 16 to 1 the average value of the 

distribution varies from 0.1 to 0.001. 

Figure 4 shows that when the void ratio decreases from 0.33 to 0.01, the average ratio of 

velocity differences, after a shock, increases from about 10 to 1000. This can be explained by 
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the fact that decreasing the void ratio increases ball curvature and thus velocity dispersion.  

We will develop some fundamental consequences of this point during the discussion. 

We also note that for the higher void ratio (0.33 for R=16) the dispersion function 

takes a triangular shape with two asymmetric slopes to which we estimated the slope values 

of Su=2.2 and Sd=-5. The top of this triangle is the most probable value of An, approximately 

corresponding to a dispersion factor Rc=1, meaning no dispersion at all. Note that the slope 

differences cause A to be less than 1 most of the time, meaning that shocks are mostly 

dispersive. 

We have exploited the characteristics of this triangle curve to calculate the evolution 

of Nc for higher values of Nb (until 217) and lower values of εp (until 2-45). To valid this 

calculation we first verified that the dispersion distribution remained invariant in respect to 

Nb as long as the void ratio remained constant, and we also verified this invariance when ∆P 

increases from its lower scale (∆P ~ 2-35 ) to the higher one (∆P ~1 ). This invariance can be 

explained by the fact that the higher value of ∆P is low enough compared to the radius of the 

billiard balls  (R=16). 

We used this triangular distribution to extrapolate our void ratio 0.33 simulation until 

217 ~ 130.000 balls by taking an initial velocity difference equal to εp (as εp is also 

quantifying velocity for adimensional time). We then successively multiplied the difference 

by different ratios randomly chosen in respect to their distribution. We stopped these 

operations when the critical step was reached (difference > 1 pixel) to collect the Nc value. 

We repeated this process as long as necessary to collect a statistically robust Nc average. 
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Fig. 5. Nc variation curves versus Log2(Nb) et -Log2(εp) for the void ratio Rv=0.33 :  Unbroken lines represent a 

simulation using a two-ball statistical model (with triangular  velocity dispersion function). Dotted lines on the 

left represent the real simulation using all shock -calculations. Dotted lines on the right represent an 

extrapolation for making an approximate estimate of the Nb values for which the axis Nc=1 is reached. 

            We calculate the Nc average for 9 values of εp ( 2
-5 to  2-45 ) and 16 values of Nb (23 to 

217 ). The figure 5 shows the global result of our study, where on the left we added dotted 

lines representing the result of our precedent study and on the right a hypothetical linear 

extrapolation for Nb > 217 that we will discuss further.  We note a rough correspondence 

between the results of the two different simulations, though the decrease with Log2(Nb) tends 

in both cases to produce similar slopes for higher values of Nb. The main differences between 

these results are observed for high values of Nc and low values of εp.  

These differences can be explained by the limited computing precision of 64-bit 

which introduces arbitrary information at the lowest resolution. Such an error, negligible at 

small Nc, increases however with the number of shocks and is then propagated to higher level 

bits until the εp resolution is reached, thus the calculations begin to be biased.  So the lower 

the εp value, the sooner the bias begins and keeps on increasing with the average number of 

shocks Nc. The consequence is that we have to consider the two-balls model as more reliable 
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than the real simulation because only the latter is affected by this bias by calculating all the 

shocks.   

Now the following question is to evaluate the possibility for extrapolating these 

results so as to find out the asymptotic behavior of Nc curves when Nb → ∞. We have two 

objective reasons for arguing whatever εp, all Nc curves bisect the axis Nc=1 instead of 

tending towards the Nc=1 value. The first reason is that we can observe that the first three 

curves calculated for εp =2-5, εp =2-10 and εp = 2-15 respectively bisect the axis Nc=1 when 

Log2(Nb) is approximately equal to 9, 12.5 and 16 (figure 5). The second is that we can show 

on Figure 6 that whatever εp, it is always possible to find a value of Nb for which the 

probability for two trajectories to diverge after only one shock is around 100%, so that the 

result is Nc=1.  

Figure 6 illustrates the probability distributions of Nc when εp varies from 2-5 to 2-45. 

Note that the distribution curves are approximately parallel when Nc→1, so that they always 

bisect the vertical axis Nc=1. This property, which means that the divergence probability is 

never equal to zero, whatever Nc, can be explained by the existence of a borderline case in 

the behavior of coupled balls: a shock occurs for one of them but not for the other. Figure 6 

shows this borderline case for two balls with the same velocity and two perpendicular 

trajectories, so that they either collide or just graze past each other when their center axis is at 

45°. Observe that in the case of collision or grazing, the velocity values are totally different 

whatever the εp value, which explains why a divergence always remains possible for Nc=1. 
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Fig. 6. Top left, logarithm distributions of the probability Pd of divergence after a number of shocks Nc, in 

function of εp . At the bottom, illustration of the borderline case where two balls are just touching which explains 

why Pd is never equal to 0, whatever the Nc value. 

We conclude that all the curves plotted on Figure 5 bisect the axis Nc=1, meaning that 

to adopt a linear model to express the decrease of Nc when Nb tends to infinity is well 

justified: 

Nc ~ A + B Log(ε) + C Log(Nb)         (13) 

A, B and C are approximately constant values in restrictive intervals of Log(Nc) and Log(ε). 

For example, if we suppose that Log(Nb)>10 and Log(ε)< 50, we can determinate the A,B 

and C values: 

Nc ~  2.8 + 0.21 Pa – 0.35 Log(Nb)          (14)  

Where Pa = (-Log(ε)) = (Pi – Pc) is the additional information relative to the precision 

corresponding to the figures after the decimal point of the phase coordinates. We can then 

find that when we increment Pa and then double the precision, we only have to multiply the 

number of balls by 1.5 to keep the same critical instant for which the billiard becomes 

indeterminist.  
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This means that for a given Nc, on which depends the maximum of reliable information (Nb x 

Nc x Pc) that is possible to calculate for a given ball, Pc being the precision required for 

calculation, the additional information that needs to be included in its initial conditions is also 

proportional to the total number of balls. We can then reformulate lb (10) by using an 

adimensional time N corresponding to the average number of shocks per ball and also by 

using Pc and Pa, for which we have (Pa + Pc) < 64 bits: 

Ib =  Nb N (Pa (1 -N/Nc) +Pc)    if 0 < N < Nc      (15) 

Thus, the formula (15) expresses the fact that the loss of the information of the billiard 

ball is linear, which can be explained by a Lyapunov dispersion relative to each shock and to 

the fact that we consider here only the global averaged statistical effect. We will recall that 

the residual information lb = Nb x Nc x Pc is also lost when N > Nc and is lost even more 

quickly, due to the contagion phenomenon, but we cannot quantify this loss after the critical 

step because we stop calculations.  

It appears from (14) and (15) that for only one phase coordinate the information loss 

is equal to Pi/Nc and increases with Log(Nb) for a given Nc value.  For the values of εp that 

we sampled and for low values of Nb, this loss is around 3 bits per coordinate. Figure 7 

illustrates the variation of this loss for Pa = 30 bits and Pc = 10 bits, so Pi = 40 bits: note that 

when Nb increases from 200 to 5000 the information loss grows from 3 to 5 bits per shock 

and per coordinate (30/10 to 30/6). On this figure, the information relative to initial 

conditions is represented in green and the information relative to the shock calculations is 

represented in blue. Each rectangle corresponds to 10 bits, so that we can easily calculate the 

information contained in one ball trajectory of Nc successive coordinates at the Pc precision, 

which varies from 100 bits to 60 bits as Nc decreases from 10 to 6.  

Now if we compare the quantity of information contained in the calculated trajectories 

with that contained into the initial conditions, we observe the following paradox: this latter 

quantity can sometimes be higher than the calculated one. This is explained on the one hand 

by the fact that the initial precision can greatly exceed the one required (40 bits here, instead 

of 10 bits) and on the other by the fact that in order to memorize the trajectory of one ball, we 

simply need to memorize successive positions because velocities can be deduced from 

positions. This is not the case for initial conditions for which we need both positions and 

velocities. In Figure 7 we have shown the borderline case for which the paradox appears: for 

Nb = 1000 balls and then Nc = 8 the trajectory information, equal to 8 x 10 = 80 bits, is 
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exactly equal to the initial condition information which is 2 x 40 = 80 bits. As it is difficult to 

express this paradox in a few words, we decided to call it “the demon of determinism”.  

 

Fig. 7. Illustration of the emergence of the “demon of determinism paradox” for one phase coordinate when Nb 

increases. Colored rectangles are 10-bit blocks. Green blocks correspond to the information required for initial 

conditions whose precision is Pi=40 bits. Blue blocks correspond to the calculated information whose precision 

is Pc=10 bits. Note that when Nb=1000 the initial information is equal to the calculated information. Red blocks 

correspond to the excess information that occurs when the calculated value is lower than the initial one. 

The condition for this paradox to emerge is the following: 

Pc Nc Nb < 2 Pi Nb   =>  Nc < 2 Pi / Pc        (16) 

As N tends towards 0 when Nb tends towards infinity, this inequality is systematically 

satisfied above a certain value of Nb. So, we conclude whatever the precisions Pi and Pc, 

there always exists a Nb threshold above which the billiard becomes indeterminist. Figure 8 

illustrates this generality since it shows the limit points for the paradox to be realized.  For a 

fixed value of Pc and different increasing values of Pi, the limit points are approximately 

aligned along a straight line whose slope is always positive, because Nc necessarily increases 

with Pi. It is also interesting to note the diminution of Nc when we increase Pc while Pi 

remains constant. 
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Fig. 8. Illustration of information paradox generality and its emergence conditions:  square points correspond to 

Nc and Nb values for which initial information is equal to calculated information: when Pi is increasing, there is 

always a Nb value for which this limit situation occurs and for a given Pi, the effect of increasing Pc is to 

increase the Nb limit value, but this also reduces the duration of valid determinist calculations (number of 

shocks Nc) 

To conclude this numerical study, we wish to focus on two points:  

First, whatever the size of the elementary space quantum, however small it is, the loss 

of phase information of a billiard game becomes absolute above a certain time or average 

number of shocks per ball, rendering the game indeterminist or behaving as if the balls were 

quantum particles. This indetermination resulting from chaos is well known, but we have 

pointed out that the deterministic time decreases as the number of balls increases. 

The second point that we call “the demon of determinism” seems to us more 

important, because the validity of deterministic calculations (with native or statistical 

equations) is often considered as depending only on a sufficient precision of initial 

conditions. But we have shown that whatever this precision, however small is it, there is 
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always a critical number of balls for which the information that is necessary to memorize 

initial conditions is superior to the information corresponding to valid calculations. This point 

seems critical to us because it appears to raise a fundamental problem about the validity of 

information coming from equations, whether they are native or statistic, even in a continuous 

space. 
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III. DISCUSSION 

The concept of physical information defined by (2) is involving an epistemic status of 

uncertainty in classical physics which is no more a lack of information of the observer, but a 

lack of information of the universe itself. Within a deterministic framework, uncertainty is 

generally considered the result of the unpredictability inherent to a limit of precision of initial 

conditions. In this paper, we interpret uncertainty as linked to physical information and no 

more to observer information, because it is the consequence of our hypothesis that density of 

physical information is a finite quantity. This is easily conceivable into a discrete universe, 

but more difficult to understand into a continuous one. 

Our results question the implicit idea that the determinism of a system could be 

guaranteed by unlimited precision of initial conditions, even into a continuous space. Indeed, 

we have raised a paradox that we qualify as a “demon of determinism” inasmuch as it 

expresses a strange situation apparently inherent to certain chaotic or dispersive systems: the 

valid information that can be extracted from a predictive model that calculates their evolution 

through time has a maximum that can be much lower than the entire amount of information 

contained in the initial conditions. 

A way of by-passing this paradox is to denounce a false one, by arguing that the 

information calculated by our determinist model is really superior to the initial conditions 

information, but that a part of it spreads out at levels of resolution lower than that required. In 

Figure 9, this part corresponds to the white rectangles which complete the triangle delimited 

with green and blue 10-bit rectangles. 

However, not only could this overly low resolution data not be required, if for 

example non observable, but it could also have no sense at all, since according to our 

hypothesis the maximum information contained in any space volume is finite and could thus 

limit the initial information. Another delicate point is that even if space is continuous and 

phase information is an unlimited quantity, the fact that the calculable and valid information 

can be much lower than the information that has to be introduced for initial conditions, raises 

a fundamental problem. Any predictive model should indeed be able to provide a calculation 

which plays the role of a data compression algorithm. In particular, it should be able to 

compress the data relative to the trajectories of balls in a billiard into a set of initial 

conditions occupying much less memory, yet we observe the opposite. 
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We then qualified this paradox as a “demon of determinism” because it raises a 

problem which is much more problematic than the well known unpredictability of chaotic 

systems, which let us think that the determinism of a system would be guaranteed by 

unlimited precision about the initial conditions. If we consider this unpredictability from the 

angle of physical information, we observe a crazy situation, in the sense that observable 

information in a universe of information could be infinitely low compared to the physical 

information that would be necessary to assure its existence. 

To avoid this awkward situation while keeping a physical sense to information, the 

solution that imposes itself consists of respecting our hypothesis of a discrete space and 

physical information whose density is limited in every space volume. Now we have shown in 

the introduction that this hypothesis leads as a direct consequence to the Heisenberg 

principle. This serves to legitimize our interpretation, which consists in stating that the 

indeterminism that emerges in a billiard after the critical instant is actually quantum in nature. 

Our observations relative to the high increase in dispersion (figure 4) when we 

increase the void ratio or decrease the balls radius acts to support this interpretation. The 

smaller the radius of the balls, the more important the loss of information caused by a shock.  

If we could generalize the validity of our results to particles whose interactions are no longer 

elastic but electromagnetic, then the quantum indeterminism would itself appear to be a direct 

consequence of the space geometry. However, we will not focus on this subject in the present 

paper. 

Whatever the origin of quantum states, our hypothesis - that physical information has 

a finite density - can explain the difference between quantum and classic behavior: any 

system becomes a quantum system when it loses its phase information, this loss being a 

phenomenon that characterizes highly dispersive systems such as those containing numerous 

objects that interact with each other. So the information lost by a system has to be considered 

as a really lack in the purely classical physical reality, until a compensatory mechanism 

introduces information again, allowing the system to restore classic behavior without 

superposed trajectories. In quantum physics, this mechanism involves the two aspects of 

decoherence and observation. 

Decoherence mechanism is due to the interaction between a quantum sub-system and 

its environment. This environment is usually the classical reality of a laboratory or an 

experiment that can be considered as a non quantum system enclosing the quantum sub-
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system. The result of their interaction is that the sub-system cannot maintain quantum states 

that are not coherent with the well defined states of the enclosing system, thus resulting in a 

reduction of the superposed states of the sub-system:  this can be considered as a transmission 

of physical information from environment to a quantum sub-system that therefore becomes a 

classical system, at least temporarily. 

The observation mechanism is a direct way of informing quantum reality, resulting in 

a collapse of the quantum wave of the measured particle that is very well known and even the 

center of an epistemological debate which we avoid here, the problem being that the source 

of information that informs the reduced states is unknown: Quantum randomness? Hidden 

variables? Extra dimensions [24]? According to Antoine Suarez, this information is a 

quantum randomness that could be controlled from outside space-time by free will [25]. 

Whatever its source, we find interesting to propose that observations could be a way to 

transmit information from this unknown source to everything that is observed, which is the 

case for environment itself. The major part of information transfer would then be due to the 

process of decoherence, initiated by already informed parts of the universe (that don’t lose 

their information). This could explain why reality always appears to us as purely classical, 

knowing that only the parts that are simultaneously non observable, dispersive and 

completely isolated could maintain quantum states. 

With such a proposition, the irreversibility of quantum measurement would have the 

same origin as the irreversibility in classical physics: a loss of information during 

interactions, which quantum randomness introduced by observation is not able to recover as 

before. This loss would be all the more fast as the dimension of objects (particles, balls, 

molecules…) would be small. So irreversibility appears to be directly connected to our 

fundamental hypothesis that the density of physical information is finite and limited 

everywhere. Note that such an hypothesis is essential if we consider to live into a 

“cyberspace” of information where anything is the result of a “bit with bit” calculation, like 

in computers. 

Our model of physical information is not without impact on our habitual conception 

of reality, because it calls to consider our observable reality as a "cyberspace" of information. 

A minuscule part of this reality would be informed directly by observations and the major 

part by a cascading decoherence processus. It would subsist only quantum systems which are 

not informed because they are completely isolated or they lose their information too quickly. 
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In particular, it could be the case of isolated gas, where mixing interactions between 

molecules are responsible for increasing entropy.  

In our model, entropy and information are equivalent concepts and opposite 

quantities, and so the increase in entropy during the mixing process corresponds to a loss of 

information or to quantum behavior of gas molecules. This explains the indiscernability of 

molecules that is only admitted today as a principle and it offers a clear solution to the Gibbs 

paradox by confirming the Pauli hypothesis of random phases [21] in statistical physics.  

From this point of view, therefore, it is interesting to reconsider the interpretation of 

Brillouin [22] and Szillard [1] about Maxwell's Demon: they exorcise it by saying that any 

observation of a molecule introduces information into the system that decreases its entropy 

with an energetic cost due to the measurement at least equal to kTln(2), although the physical 

sense of this information does not appear clearly in this interpretation, which maintains a 

subjective character.  This subjectivity disappears if the molecules display quantum behavior, 

because the information brought to them regains a physical sense which is the phase state 

reduction through quantum measurement.  

We can thus summarize the physical sense of information established by our model in 

two points:  

(1) The information lost during multiple interactions such as mixing is really lost by the 

physical system through a dispersive mechanism that generates quantum phase states, thus 

explaining its irreversibility. 

 (2) The physical information gained by a quantum system which becomes at least partially a 

classical one, is gained directly by means of an observation or measurement or indirectly by 

means of the decoherence process during which the exterior system transmits physical 

information. 

The difference we make between directly or indirectly acquired information  comes 

from the fact that in the first case of observation, the source is outside the universe of 

classical information, taking into account the properties of quantum wave function collapse: 

the information acquired in a reduction of phase states does not exist before the measurement 

or it should depend on non local hidden variables [23]. This is not the case with the process 

of decoherence that involves only information already contained into the local and classical 

environment of the system. 
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Observation thus appears to involve a mechanism that is still poorly understood but 

able to introduce new information into a computable universe, meaning that this information 

is not already included in this classical universe.  Therefore we conceive this universe as a 

sub-universe immersed in a quantum global universe, one containing the source of 

information that could be transmitted by observations. In a certain measure that remains 

unknown, this could compensate for the natural loss of information that affects the 

computable universe. 
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IV. CONCLUSION 

The heart of this article is an asymptotic study of statistical results of digital 

simulations of a billiard proposed as a simple model for a better understanding of the 

mechanisms of loss of information or increase of entropy in a gas. Though purely technical, it 

has the fundamental advantage of highlighting a paradox we call “the demon of 

determinism”, something that causes problems when we try to find a physical sense for phase 

information: not only should we accept having to deal with calculation models that may 

consume more information than this we are trying to calculate, but also, in order to preserve 

absolute determinism physical information should be infinite in closed parts of space. Now if 

we consider that physical information is really quantified by a quantum kln(2) in relation to 

entropy, this conclusion appears unacceptable.  

We then decided to postulate that the density of physical information should be a 

finite quantity everywhere, by giving it a purely classical sense, something that had the 

advantage of being simpler and more intuitive than algorithmic complexity.  What is notable 

here is that the Heisenberg principle can be interpreted as a direct consequence of these 

hypotheses.  This then leads us to suggest a transition from classical to quantum states in 

order to understand the loss of information and thus send the question of determinism back to 

quantum mechanics. It then becomes interesting to note that this suggests quantum mechanics 

could be a natural extension of classical mechanics, not at all incompatible or conflicting, 

since purely classical models seem to fail to give a physical and objective sense to phase 

information in a space that is not quantified.  

By using our physical information model to clarify the famous thermodynamic 

ambiguities raised by Gibbs and Maxwell, we could verify its pertinence and then conclude 

that a classical dispersive system could lose its physical phase information when it is isolated 

from any process of quantum reduction by decoherence or direct observation. Any phase state 

could then become at least partially a quantum one and again recover its physical information 

when it interacts with an “informed” environment or a measuring device. However, where 

this information is directly brought about by observation, according to quantum mechanics it 

could be not already included in our classical universe of physical information. We could then 

claim that observation could add physical information to the universe. 

We may well wonder what observation and its mechanism actually are, as well as the 

information source that could inform our classical reality through observation, but these 
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questions are already part of the debate in quantum mechanics. Our own sentiment is simply 

that our classical reality could be immersed in a more global quantum world where notions of 

space, time and causality could be upset. Without speculating further, it remains important to 

notice that this interface function of observation could question the second law of 

thermodynamics, according to which the entropy of the global universe should only increase. 

Which global universe? If we consider our universe of classical information and the physical 

sense of entropy that emerges from our model to be a measurement of quantum 

indetermination, it turns out that observation and then consciousness could compensate for 

increase in entropy, thus explaining why it could decrease or remain stable in living systems. 

However, we have no idea at all about the extent to which it could happen, and it is possible 

that this contribution could be minuscule and even negligible, as everything leads us to 

believe that the classical world around us is already perfectly informed. 
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