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Real-time identification of smoke images
by clustering motions on a fractal curve
with a temporal embedding method
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Abstract. Automatic forest fire detection with CCD cameras requires a
landscape image analysis in two stages: first the tracking of local dy-
namic envelopes of pixels, and second the discrimination between the
various natural phenomena that may cause such envelopes. For this
second process, we have to deal with restrictive conditions: lack of spa-
tial information, complexity of motions, and real-time constraints on de-
tection. We present here a fast algorithm adapted to the extraction of
complex motions in small spatial envelopes. The principle of the method
is to extract local motions from cluster analysis of points in a multidimen-
sional temporal embedding space. We detail the four successive steps of
this method: temporal embedding of gray-levels, fractal indexing of
points, chaining points into a linked list, and motion extraction from point
sequences of the linked list. © 2001 Society of Photo-Optical Instrumentation En-
gineers. [DOI: 10.1117/1.1355254]
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1 Introduction

Forest fire detection usually requires observers looking for
early smoke sources in the landscape from a high lookout
post. As that is a difficult and a workforce-consuming task,
automatic apparatus using image-processing algorithms has
been developed for artificial vision and detection with CCD
cameras. We had to improve one of these systems in order
to reduce the number of false alarms due to various dy-
namic phenomena, such as wind-tossed trees, cloud shad-
ows, reflections, human activity, and so on. The difficulties
of processing landscape images are due to their varying
nature and to the large number of dynamic events that may
appear under various illumination conditions, depending on
weather, distance, time of day, masking objects, etc. These
events produce dynamic envelopes, which are not always
caused by motion and consist of time-varying gray-levels
of connected pixels in several image regions. The system
given to us was able to extract persistent dynamic enve-
lopes through a fast-optimized image differentiation algo-
rithm. We present here a method to improve this system by
estimating the various motions within the given envelopes,
in order to discriminate smoke from other phenomena.

Usual image-processing tools for dynamical analysis
work well on instantaneous motion detection of individual
rigid or deformable moving objects,1,2 but are ill suited to
detect and quantify variegated and fleeting motions into
small or dimly contrasted quasistatic envelopes. In the case
of smoke, the motions to detect are not sharply contrasted,
because they consist essentially of smoke fronts that propa-
gate on an already smoke-filled background. Figure 1
shows an example of a smoke envelope produced by a fire
in a sequence of images. As the smoke puffs vary slightly

in direction, the contours of the envelope are unstable and
fuzzy. Therefore any kind of spatial approach is very un-
certain.

The fundamental basis of our approach is the observa-
tion that the motions of various patterns like smoke puffs
are producing correlated temporal segments of gray-level
pixels~Fig. 2!, which we calltemporal signatures. They are
due to the propagation of the smoke puff into the pixels of
the envelope. The temporal embedding of the gray-level
segments allows getting the correlated segments as clusters
of points. These clusters are formed by the repetition of
temporal segments at various times and positions. Motion
extraction is then reduced to the problem of clustering
points. We need an algorithm that is fast enough to process
envelopes in real-time, as these envelopes may contain
thousands of new pixels for each sampling time. To have
direct access to the neighbor points of the same cluster and
then minimize computing time, we use a fractal indexing
technique and an optimized linked-list algorithm.

The four subsections of the next section describe in de-
tail the successive processing steps of our real-time algo-
rithm, optimized for smoke detection. In the last section,
we also present an empirical validation of the method
through an off-line motion-detection calculation. Finally,
representative results obtained with smoke-concurrent phe-
nomena~clouds and wind-tossed trees! are illustrated and
discussed.

2 Processing Steps

2.1 Temporal Embedding

Dynamic envelopes of pixels can be considered as sets of
gray-level signals. Figure 2 shows the temporal correlation
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of four smoke signals incoming from four spatially close
pixels, located along the mean trajectory of the smoke
puffs. The two straight lines represent different propagation
velocities of two successive smoke puffs that cross the
same pixels. To follow just one smoke-puff trajectory, we
have to track the short-time luminosity variations produced
by the passage of a single puff. A temporal signature, for
example the bold one plotted in Fig. 2, can represent such a
transitory puff of smoke. When temporal segments show
spatial redundancy, an appropriate choice of embedding pa-
rameters, using the method of time-delay coordinates,3 may
induce correlated data that appear as a cluster of points in
the embedding space~Fig. 3!. For each pixelp of the en-
velope we recover its lastd luminosity variations in order
to obtain in the mathematical embedding space a new point
Pk :

Pk5~ l p~ t2~d21!t!, . . . ,l p~ t2t!,l p~ t !!, ~1!

wherel p(t) is the luminosity of pixelp ~coded in 8 bits! at
time t.

The choices of the embedding dimensiond and of the
image sampling periodt are critical, as the puff segment
duration depends on the puffs apparent propagation speed,
which depends mainly on the distance of the observed
smoke. The sampling period is fixed by the detection sys-
tem at the valuet50.33 s. This is a sampling rate that is
fast enough for close smokes~500 m from a 60-deg CCD
objective!, whose puffs cross quickly over the pixels. At
the opposite extreme we need to detect distant smokes, at
least 5 km away. In this case the mean frequency of the
signals is reduced, and the optimal segment duration is
longer. The embedding-space dimensiond determines the
duration of the temporal signature. If this duration is too
short, far motions are not tracked, and if it is too long, close
smoke puffs cannot be estimated. The choiced516 that we
made was guided by a balance between two considerations.
A higher value would have required an excessive quantity
of memory for the system and significantly increased the
calculation time. A smaller value would have reduced the
detection ability for distant smokes.

After embedding all the temporal segments of a given
envelope for successive sampling times, groups of embed-

Fig. 1 Smoke source and its gray-level dynamic envelope for a 4-km-distant forest fire.

Fig. 2 Temporal signals of four pixels along a smoke-puff trajectory,
and their correlated gray-level segments.

Fig. 3 Cluster formation induced by the spatial propagation of a
correlated temporal segment.
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ded points are accumulated within numerous clusters. The
extraction of these clusters from a large amount of embed-
ded data requires an optimized clustering approach adapted
to real-time analysis.

2.2 Fractal Indexing

2.2.1 Clustering with space-filling curve

Clustering techniques are most often used for data mining,
which is the process of extracting useful information from
very large data sets. Data mining consists essentially in
looking for similitudes in a high-dimensional space where
each point constitutes a record. More generally, finding
nearest neighbors ind-dimensional space is a task encoun-
tered in many data-processing problems. Today these tech-
niques are currently applied to the analysis of time-series,4,5

multimedia,6 and medical7 databases.
The problem of multidimensional, in contrast with one-

dimensional, data clustering is that no system of total or-
dering can preserve spatial locality. There was a significant
step forward in the optimization of multidimensional data-
bases due to the advent of spatial indexation8,9 and spatial
join algorithms,10 which provide structured storage of the
data and effective multidimensional queries. One-
dimensional access may also be established by means of a
R1 or e-k tree indexation, for example.9 Such indexation is
obviously not general, and a recalculation is necessary for
any new configuration of the data.

An interesting approach to the problem of spatial order-
ing, proposed by Orenstein,11–13 uses a linear mapping of
the multidimensional space. The most desired property of
such a mapping is that the localities of objects in multidi-
mensional space are preserved in the linear space. Sophis-
ticated mapping functions have been proposed in the litera-
ture in order to design good distance-preserving mappings
~Fig. 4!. One, based on interleaving the bits from the coor-
dinates, which is called theZ curve, was proposed in Ref.
11 @Fig. 4~a!#. An improvement on it was suggested by
Faloutsos, using Gray coding on the interleaved bits.14 A
third method, based on the Hilbert curve@Fig. 4~b!,~c!#, has
been proposed in Ref. 11. All distance-preserving space-
filling curves are special instances of fractal curves.15 They
represent a continuous path going through each point in the
space just once, and they also maintain continuity and prox-
imity between the points. Thus spatially close points will
find themselves close in position along the fractal space-
filling curve. In general, a space-filling curve starts with a
basic path on ak-dimensional square grid of size 2. The

path visits every point in the grid exactly once without
crossing itself. It has two free ends that may be joined with
other paths. The basic curve is said to be of order 1; each
vertex of the basic curve is then replaced by the curve of
previous order, which may be rotated and/or reflected to fit
the new curve.

2.2.2 Z ordering

Experimental data indexation on a space-filling curve is
made possible by the fact that measurements are always
discrete and have a limited resolution, encoded as a number
e of bits. As a result, the embedding space has a limited
number of points equal to 2de, whered is the embedding
dimension. Each point can be encoded as an index that
represents its position on a space-filling curve. The value of
this index, called thefractal rank, is contained between 0
and 2de.

The Hilbert space-filling curve@Fig. 4~c!# achieves a
better distance-preserving mapping than the other two
space-filling curves,16 but theZ curve yields the fastest in-
dex calculation.13 As computing time was critical for our
application, we used theZ curve to index our temporal
embedded points. The basicZ curve for a 232 grid is
shown in Fig. 5~a!. Higher-orderZ curves are obtained by
replacing each vertex of the basic curve with the previous-
order curve@Fig. 5~b!,~c!#. Orenstein used the termZ or-
dering to refer to the ordering of points on theZ curve. He
also used the termZ value to refer to theZ curve fractal
rank.

Let P be a point in thed-dimensional space with its
e-bits coordinatesxlP$0, . . . ,2e21%, andxl

j the j ’th bit of
the coordinatexl . Thus

xl5~xl
e21, . . . ,xl

1xl
0!25 (

j 50

j 5e21

2 j xl
j . ~2!

The Z values are computed by interweaving the bits of the
binary representation of the coordinates of the point. TheZ
ordering permits quick analytical calculation of theZ value,
z(P), through the following relation:

z~P!5 (
j 50

e21

(
l 50

d21

2l 1 jdxl
j . ~3!

The example in Fig. 6 shows theZ value calculation for the
point P of coordinates~1, 6!, in dimension 2 and withe53

Fig. 4 Fractal space-filling curves in dimension 2.
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bits. For higher-dimension spaces~d.2! the Z value is ob-
tained in a similar way by interweavingd numbers instead
of two.

2.3 Linked-List Chaining

The objective of the linking algorithm presented here is to
give, for each incomingZ-ordered point, a direct access to
the very few points that neighbor it. We use the distance-
preserving properties of theZ curve to reduce drastically
the number of comparisons that are necessary to extract
these neighboring points. Indeed, scanning all the points
would be prohibitive. All the embedded points are then
linked into a list, with respect to theirZ value, so that
consecutive points in the list are neighboring points in the
space. The problem of real-time cluster extraction then
boils down to the comparison of a limited number of suc-
cessive neighboring points along a dynamic list that is con-
stantly refreshed. The chaining procedure we describe here
makes it possible to insert every new incoming point into a
linked list, between its immediately preceding and follow-
ing neighbor points.

To connect consecutive points according to theirZ
value, we use two seriesa( ) and b( ), which contain, for
each point index, the indices of the next and previous
points crossed by theZ curve. Such a doubly linked list is a
data structure in which each element contains a datum and
pointers to the next and the previous elements in the list. A
pointer to a nonexistent location indicates the end of the
list. To access the list we only have to know where its first
element is stored. A new element is inserted into the list by
redirecting the pointer of the preceding element and letting
the new element point to the following one~Fig. 7!.

In the case ofK embedded pointsPi , iP$1, . . . ,K%, the
list pointers are simply the point indices in the sampling

order. If Pj is the point followingPi on theZ curve, then
a(i)5j. Let b( ) be the inverse series ofa( ), such that
a(b(i))5i.

The chaining technique we present now is optimized for
real-time applications where fast addition of new points and
removing of old points into the linked list is necessary. We
use an optimized memory access algorithm that works as
follows: when a new pointPi is embedded, we calculate its
Z valuez(Pi!. After performing low-order bit truncation of
z(Pi!, we obtain anm-bit Z value to identify its hypercube
among the 2m distinct hypercubes. We use a 12-bit address-
ing table of 4096 hypercube identifiers. Then the truncation
reduces the 128-bitZ value to a 12-bit address Hck

5(z(Pi)@(ed-m)), where@ is the bit-shifting operator.
This table contains also, for each hypercubeHck , data that
allow us to retrieve directly all the points of this hypercube.
For instance, the table contains the index of its first point
and the number of points belonging to the hypercube.

The hypercube identifier ofPi makes it possible to iden-
tify a restricted set of chained points into which the new
point must be inserted. This insertion is made between the
two points whoseZ values framez(Pi!. We use the indexi j
to refer to thej’th point in the list. For example, in Fig. 7
Hc1 is the hypercube identifier ofPi . To find the position

Fig. 5 Z curves of order 1, 2, and 3 in dimension 2 for discrete spaces that contain 4, 16, and 64
points, respectively.

Fig. 6 Z-value calculation by interweaving bits. Fig. 7 Insertion of a new point in the linked list.
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of Pi in the list, we go from the first point stored inHc1 to
the next ones, and we compare the rankz(Pi! with the Z
value of each point met inHc1 . Once the position ofPi is
found in the list, we update, in the general case:

• the valuea( i 1)5 i of the preceding pointPi 1
to point

toward the index of the new pointPi

• the valueb( i 2)5 i of the next pointPi 2
to point to-

ward the index of the new pointPi

• the valuesa( i )5 i 2 and b( i )5 i 1 of the new point to
point toward the points that frame it,Pi 1

andPi 2
.

2.4 Motion Clustering

2.4.1 Off-line analysis

The interest of the off-line calculation we present here is to
demonstrate the distance-preserving effects of the
Z-ordering and to provide an empirical validation of the use
of the linked list to extract neighboring points. We intro-
duce a mathematical function, theisolation function, which
is in inverse relation to the density of point clusters along
theZ curve. The isolation functionI D( j ) is defined so as to
quantify the average dispersion ofD successive points on
the linked list. Its value is deduced from the successive
neighbors on the fractal space-filling curve by the relation

I D~ j !5z~PaD( i j )
!2z~Pi j

!, ~4!

whereaD( i j ! is the index of theD’th point preceding the
j’th point on the linked list. This function provides a simple
way to demonstrate the distance-preserving effect by means
of tracking the local minimum peaks due to the clusters. If
the value ofI D( j ) is in inverse proportion to the local den-
sity of the j’th chained sequence of points, then a local

minimum for one sequence ofD successive points on the
fractal chaining should correspond to a cluster in the space,
thus providing a way to identify it.

To verify this hypothesis empirically, we have calcu-
lated I D ~Fig. 8! from the envelope of a 500-m-distant
smoke, near enough to fill a spot of approximately 200
pixels. The maximum extension of the envelope is about 40
pixels in the mean direction of the smoke. The data were
processed from a 32-s-duration sequence of 100 images.
We used an embedding space of dimensiond516, where
each axis represents ane58-bit gray-level; thus theZ val-
ues varied from 0 to 2128. To represent such a 128-bit num-
ber we have used an array of four long integers. We have
fixed the parameterD540 to be equal to the maximum
extension of the envelope, as it is an estimate of the number
of pixels affected by a puff of smoke during its propaga-
tion. We use it as a rough estimate of the cluster size in the
linked list.

The graph of Fig. 8 shows the isolation function versus
point index along the linked list. We notice the presence of
23 main minima. Each minimum corresponds to a sequence
of D points, which gives evidence of the presence of a
cluster. The huge number of clusters shown by this function
is partly due to various puffs, but is mainly due to the
redundant repetition of clusters associated to the various
phases of the temporal signatures. To verify this assump-
tion, we estimated the number of signatures of each cluster
identified by a minimum, by averaging theD temporal seg-
ments of each cluster~Fig. 9!. We notice in that example
that their temporal segment evolutions differ in three cat-
egories, and are generally delayed so as to correspond to
the various phases of three different propagation fronts of
smoke puffs. We also notice that the various phases of each
temporal signature are consecutive along the chain. The
first temporal signature is displayed through the minima 1
to 9, the second through 10 to 13, and the third through 15

Fig. 8 Isolation function and cluster identification by the local minima of the isolation function.
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to 23. This is due to theZ ordering, as a delay of one phase
corresponds approximately~for high-order bits! to a one-bit
shift ~multiplication or division by 2! of the Z value.

For our off-line process, we suppose that it is possible to
identify a smoke puff’s spatiotemporal trajectory using the
space and time coordinates of the data contained into a
sequence ofD points. But this hypothesis is limited in sev-
eral respects. First, we do not know the real limits of the
cluster of a sequence, so we have to deal with sequences of
the linked list that may contain more than one cluster or
parts of clusters. Second, we use space-filling curves that
do not totally preserve distances through linear mapping,
particularly in the case of theZ curve mapping, which gen-
erates artifacts~Fig. 10!.

These limitations explain the jumps encountered inZ
ordered sequences, which contain successive features that
may be rather different. Figure 11 illustrates a cluster of
D540 points that is associated with local minimum 5 of the
isolation function of Fig. 8. The various temporal signa-
tures associated to the extracted points of this cluster are
plotted in Fig. 11 in increasing order of theirZ values. It is
to be noticed that the succession of temporal features is not
continuous, as sometimes little clusters of the same con-
tinuous signature are inserted into the larger one, for ex-
ample from minima 10 to 18. Nevertheless, these artifacts
may be acceptable if we do not need precise delimitation of

clusters, but only extraction of redundant signatures. The
temporal segments in Fig. 11 are identical-looking, and so
we can extract a specific temporal signature from this se-
quence of segments. The temporal segments that present
the best correlation with the average signature are plotted in
bold lines. The other temporal segments, which are corre-
lated but differ slightly from the average signature, are in-
terspersed within the sequence.

Despite this mixing between various temporal segments
in the same sequence, trajectories may be identified with a
unique cluster analysis. For recovering the cluster’s points
of the j’th sequence of the linked list
Pi j

,Pa1( i j )
, . . . ,PaD( i j )

we consider their spatiotemporal
coordinates:

~xi j
,t i j

!,~xa( i j )
,ta( i j )

!, . . . ,~xaD( i j )
,taD( i j )

! ~5!

for the horizontal pixel positions in the picture, and

~yi j
,t i j

!,~ya( i j )
,ta( i j )

!, . . . ,~yaD( i j )
,taD( i j )

! ~6!

for the vertical ones. Here (xi j
,yi j

) is the pixel position in

the image that produces the luminosity variations ofPi j
.

The smoke we are studying in this work presents a pre-
ponderantly horizontal orientation. Figure 12 shows the
horizontal displacement of two puffs of smoke associated
to cluster 5. The alignments obtained in Fig. 12 imply a
constant propagation speed of the extracted puffs. These
two distinct trajectories are associated to the two slightly
different temporal segments differentiated in Fig. 11. More
generally, all the diagramsx(t) and y(t) associated to the
various clusters present this linear disposition. These results
show various motions of the puffs of smoke, tracked at
various phases by their temporal signatures. This redun-
dancy of data is useful to compensate the cases where clus-
ter trajectories do not have enough points to identify them
or to calculate their parameters precisely.Fig. 10 Hypercube jump artifact of the Z curve.

Fig. 9 Average temporal signatures of clusters identified by the local minima of the isolation function.
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Figure 13 shows results for other smoke puffs and con-
current phenomena such as a cloud and a wind-tossed tree.
We notice a very significant difference between the tree
results@Fig. 13~c!# and the other ones@Figs. 13~a!,13~b!#
which give evidence of motion along a trajectory. This re-
sult argues in favor of an elementary motion criterion,
which is used in our real-time algorithm~see next section!.
The similar alignments in Figs. 13~a! and 13~b! show that it
is not possible to distinguish a smoke and a cloud with the
analysis of a single cluster.

For the sole purpose of validation, we used an off-line
process to make a cumulative analysis of the set of local
minima that allows us to extract the main trajectories inside
a spot of smoke. Figure 14 shows that the angles of the
motions calculated from the set of local minima are distrib-
uted between extremes that correspond to the smoke enve-
lope. The lines’ lengths represent the numbers of pixels
crossed by the temporal signature extracted. The variability

of these angular directions demonstrates the complexity of
the puffs’ motion inside the spot of smoke which itself has
a global motion direction. The movements of the puff of
smoke are due to the thermal and turbulent phenomena
connected with the wind. This causes the observed large
diversity of the detected motions. However, this character-
istic is not sufficient for a perfect identification of a smoke
source, because the extreme angles vary greatly with the
smoke and the wind conditions. Other criteria are necessary
to make an efficient smoke detector. In the next section, we
present more efficient, real-time calculation criteria, which
are actually used by our system.

2.4.2 Real-time detection

The objective of our real-time processing algorithm is to
provide a diagnosis based on cumulative motion estimation
at each sampling time. Calculating the isolation function

Fig. 11 Temporal segments of the point cluster identified by local minimum 5.

Fig. 12 Horizontal displacement of the temporal segment of Fig. 11.
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and extracting its peaks and clusters, as described earlier
on, could provide this motion estimation. But this calcula-
tion presupposes that enough data have already been em-
bedded. Also, we do not have an efficient method to refresh
the isolation function at each sampling time without scan-
ning all the linked list points. We propose here a new al-
gorithm that is more adapted to online processing and does
not use the isolation function.

At each sampling time, temporal signatures of the last
d516 gray-levels of each pixel are embedded and chained
into the linked list of the envelope. Then comparisons are
made between each embedded point and the other points in
the immediate neighborhood of the list. The numberD of
comparisons is no longer fixed and is limited only by the
calculation time available for the process~which is neces-
sarily less than the image sampling period, 0.33 s!. As this
calculation time depends on the number of pixels that are
embedded at each sampling time,D varies in inverse pro-
portion to the number of pixels of the envelope. A mini-
mum Dmin and maximumDmax are used so as to keepD
within reasonable bounds.

For each new embedded point, we calculate the histo-
gram of the instantaneous velocities associated to theD
pairs of points formed with this point and itsD immediate
neighbor points of the list~D/2 before this point,D/2 after!;
knowing the space and time coordinates of the neighbor
points, the quotients of their differences from those of the
new embedded points are calculated and added to a veloc-
ity distribution histogram~IVH !. Figure 15 shows represen-
tative results calculated for the envelopes of a cloud, a
smoke, and a wind-tossed tree, the smoke being at a dis-

tance of 4 km. We notice no significant results in the case
of the tree and in contrast a very well-defined peak for the
cloud.

When examining various types of smoke results, we al-
ways observe a spreading histogram with a certain variabil-
ity of the standard deviation, but that always keeps above
that of the cloud. Conversely, we consider that there is no
motion detected if the value of this instantaneous standard
deviation~ISD! is above a certain threshold, this parameter
being included in the initialization file of the system. If any
motion is detected, the velocity of the maximum is then
incremented into a cumulative velocity histogram~CVH!.
At each sampling time, the cumulative histogram is ana-
lyzed to calculate criteria to distinguish smoke from other
phenomena.

In the case of smoke and clouds, we observe that the
CVH @Figs. 15~a!,15~b!# has the same shape as the IVH,
but is smoothers and the standard deviation~CSD! is stable.
When the CSD is less than a minimum deviation~CMD!,
we invalidate smoke detection for this sampling time~Fig.
16!. The use of the CMD criterion poses a problem only in
the rare case when certain smoke envelopes are stretched
by a very stable wind, so that their velocity distribution
looks like a cloud’s typical one. But that cannot last, and
the only consequence is that the smoke detection time is
increased.

In the case of wind-tossed trees~Fig. 15c! and many
other phenomena, the cumulative histogram is most often
rather poor in data, because motions are detected in the
case of pointlike situations and for precise pixels only. A
second criterion is then the minimum average energy~ME!

Fig. 13 Motion detection from several dynamical envelopes of natural phenomena.

Fig. 14 Extracted trajectory inside a spot of smoke.
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of the cumulative histogram per embedded point. This cri-
terion is the most selective one, as it separates smoke from
a lot of various pseudo-dynamic envelopes that are not
eliminated by the envelope extraction system

In addition to CMD and ME, other criteria are used, for
example, those based on the shape and on the smoothness
of the cumulative histogram; but they are more question-
able and have less generality. Among the other criteria is
the sense derived from the angular distribution~top or bot-
tom!; the smoke always moves to the top. Then instanta-
neous and cumulative angular histograms are also calcu-
lated and used like the velocity.

3 Discussion and Conclusion

One of the main interests of the temporal embedding algo-
rithm we have presented in this paper is that it is sensitive
enough to detect local motions by means of only a few
pixels. So it is particularly adapted to the analysis of small
dynamic deformable objects with multiple transitory mo-
tion paths, such as small envelopes of smoke. The four
processing steps described before lead first to a local-
motion diagnosis at the level of one pixel, and second to a
global-motion diagnosis at the level of the whole envelope.
These diagnoses are used for a complete smoke identifica-
tion.

The smoke identification uses a cumulative analysis of
the instantaneous motion data. We have found that the most
efficient data for smoke identification are the velocity dis-
tribution in the envelope, whose energy, or average number
of instantaneous motion diagnoses per embedded point, is
higher than the energy of most other landscape phenomena
except clouds. But for clouds, the standard deviation of
velocity distribution is generally lower than for smoke.
Thus our main criterion for smoke detection is based on the
analysis of the velocity distribution, using a minimum en-
ergy threshold and a minimum standard-deviation thresh-
old. We have shown that our method is able to provide
direct access to useful correlated data when a fast process is
needed. The fractal embedding method does not use anya
priori model or parameter in the calculation for the extrac-
tion of a result. For example, no threshold is used to define
the gray-level variations above which the presence of a
smoke puff may be suspected, and this is an advantage,
because smoke can be sometimes dense, sometimes nearly
transparent, and can produce slow, fast, and more often
mixed gray-level variations.

It is of interest to point out the main aspects of our
method from a general point of view, by examining its
different processing steps as follow:

• First step: gearing the embedding type to the informa-
tion sought. Temporal embedding shows various fleet-
ing motions within a complex dynamic spot. In con-
trast, other embedding methods would bring out the
most stable features of any complex object.

• Second step: calculating the fractal rank throughZ
curve indexing.Z curve indexing permits very fast
calculation of the fractal rank through transposition of
a matrix of bit coordinates. This very simple operation
can be carried out by a specialized low-level special-
ized routine.

• Third step: fractal chaining. By truncating the fractal
rank so as to classify all possible ranks within a lim-
ited number of classes, thus not exceeding the
memory of ordinary computers, each new point may
be chained inside a hypercube containing a very small
number of already chained points. This limits the
number of rank comparisons to be carried out, and
therefore the computing time.

• Fourth step: extracting cluster data. From the minima
of the isolation function, or more simply from the near
neighborhood of any incoming point, the presence of a
cluster can be detected, and then the relevant data as-
sociated to it can be analyzed.

Fig. 15 Instantaneous velocity histograms (IVH) for one point neighborhood and cumulative velocity
histograms (CVH) for all the point neighborhoods.

Fig. 16 Real-time detection algorithm using the four steps: temporal
embedding, fractal ordering, linking points, and motion clustering.
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One should be especially aware that a definite advantage
of fractal chaining and clustering as they appear in the third
and fourth steps is to reduce the computing time consider-
ably. This is of paramount importance when processing
large amounts of data, such as image sequences, in particu-
lar in the case of real-time computing. One of the condi-
tions for the embedding method to be used is for enough
correlation to exist to generate point clusters. This condi-
tion has to do with the redundancy of the information,
which is due to the piling up of consecutive images of an
object and to the multiplication of the measuring points
constituted by all the pixels of the phenomenon’s spot. That
is the reason why temporal embedding is particularly well
suited to an illustration of the fractal embedding method.
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